import os, io, sys, re, json, base64 import boto3 from ast import literal_eval from operator import itemgetter from langchain.agents import AgentExecutor, create_react_agent from langchain_experimental.utilities import PythonREPL from langchain.agents import Tool from langchain_aws import ChatBedrock
- from langchain_community.chat_models import BedrockChat
from operator import itemgetter from langchain_core.runnables import RunnableLambda, RunnablePassthrough from langchain.agents import AgentExecutor, create_react_agent from langchain_experimental.utilities import PythonREPL from langchain.agents import Tool from langchain_aws import ChatBedrock
- from src.backend.llm.prompts import simple_extraction_prompt, complex_extraction_prompt, simple_or_complex_prompt, decomp_prompt, agent_prompt
from langchain_community.document_loaders import UnstructuredExcelLoader from azure.identity import DefaultAzureCredential
- os.environ["OPENAI_API_TYPE"] = "azure_ad"
- os.environ["OPENAI_API_KEY"] = credential.get_token("https://cognitiveservices.azure.com/.default").token
from azure.identity import ChainedTokenCredential, ManagedIdentityCredential, AzureCliCredential from langchain_openai import AzureOpenAI from openai import AzureOpenAI import openai client = AzureOpenAI(api_key=os.getenv("AZURE_OPENAI_API_KEY"),api_version=os.getenv("AZURE_OPENAI_API_VERSION"),azure_endpoint=os.getenv("AZURE_OPENAI_ENDPOINT")) client = AzureOpenAI(api_key=os.getenv("AZURE_OPENAI_API_KEY"),api_version="2024-05-01-preview",azure_endpoint=os.getenv("AZURE_OPENAI_ENDPOINT")) completion = client.completions.create(model="gpt-4",prompt="<prompt>")
- credential = ChainedTokenCredential(ManagedIdentityCredential(),AzureCliCredential())
- llm = AzureOpenAI()
- llm.invoke("four plus four?")
import os
from openai import AzureOpenAI
endpoint = os.getenv("ENDPOINT_URL", "https://dsg-genai-playground-openai-eastus.openai.azure.com/")
deployment = os.getenv("DEPLOYMENT_NAME", "dsg-gpt-4-eastus")
client = AzureOpenAI(azure_endpoint=endpoint,api_key=os.getenv("AZURE_OPENAI_API_KEY"),api_version="2024-05-01-preview")
completion = client.chat.completions.create(model=deployment
, messages= [{"role": "system","content": "You are an AI assistant that helps people find information."},{"role": "user","content": "4+4?"}], max_tokens=800, temperature=0.7, top_p=0.95, frequency_penalty=0, presence_penalty=0, stop=None, stream=False)
print(completion.to_json())
from promptflow.core import AzureOpenAIModelConfiguration
configuration = AzureOpenAIModelConfiguration(api_key=os.getenv("AZURE_OPENAI_API_KEY"),api_version=os.getenv("AZURE_OPENAI_API_VERSION"),azure_endpoint=os.getenv("AZURE_OPENAI_ENDPOINT"),azure_deployment="")
from promptflow.evals.evaluators
import ContentSafetyEvaluator, RelevanceEvaluator, CoherenceEvaluator, GroundednessEvaluator, FluencyEvaluator, SimilarityEvaluator
content_safety_evaluator = ContentSafetyEvaluator(project_scope=azure_ai_project)
relevance_evaluator = RelevanceEvaluator(model_config=configuration)
coherence_evaluator = CoherenceEvaluator(model_config=configuration)
groundedness_evaluator = GroundednessEvaluator(model_config=configuration)
fluency_evaluator = FluencyEvaluator(model_config=configuration)
similarity_evaluator = SimilarityEvaluator(model_config=configuration)
from app_target import ModelEndpoints
import pathlib
import random
from promptflow.evals.evaluate import evaluate
models = ["gpt4-0613", "gpt35-turbo", "mistral7b", "phi3_mini_serverless" ]
path = str(pathlib.Path(pathlib.Path.cwd())) + "/data.jsonl"
for model in models:
randomNum = random.randint(1111, 9999) results = evaluate( azure_ai_project=azure_ai_project, evaluation_name="Eval-Run-"+str(randomNum)+"-"+model.title(), data=path, target=ModelEndpoints(env_var, model), evaluators={ "content_safety": content_safety_evaluator, "coherence": coherence_evaluator, "relevance": relevance_evaluator, "groundedness": groundedness_evaluator, "fluency": fluency_evaluator, "similarity": similarity_evaluator, }, evaluator_config={ "content_safety": { "question": "${data.question}", "answer": "${target.answer}" }, "coherence": { "answer": "${target.answer}", "question": "${data.question}" }, "relevance": { "answer": "${target.answer}", "context": "${data.context}", "question": "${data.question}" }, "groundedness": { "answer": "${target.answer}", "context": "${data.context}", "question": "${data.question}" }, "fluency": { "answer": "${target.answer}", "context": "${data.context}", "question": "${data.question}" }, "similarity": { "answer": "${target.answer}", "context": "${data.context}", "question": "${data.question}" } } )
input_text = "Please recommend books with a theme similar to the movie 'Inception'." native_request = {"inputText": input_text} request = json.dumps(native_request) response = client.invoke_model(modelId=model_id, body=request) model_response = json.loads(response["body"].read()) print(model_response) model_id = "anthropic.claude-3-haiku-20240307-v1:0" user_message = "Describe the purpose of a 'hello world' program in one line." conversation = [{"role": "user","content": [{"text": user_message}],}] response = client.converse(modelId=model_id,messages=conversation,inferenceConfig={"maxTokens": 512, "temperature": 0.5, "topP": 0.9},) response_text = response["output"]["message"]["content"][0]["text"] print(response_text)
def load_data_to_query(question, data):
return str(question) + ' Answer question based on following data: ' + str(data)
def read_message(message):
return message.content
def lit_eval(text): try: return literal_eval(text) except SyntaxError: return text
def extract_dict(dictionary): return dictionary['extraction']
def extract_dictionary(message):
text = message.content open_braces = 0 in_dict = False start_index = 0
for i, char in enumerate(text): if char == '{': if not in_dict: start_index = i in_dict = True open_braces += 1 elif char == '}': open_braces -= 1 if in_dict and open_braces == 0: dict_string = text[start_index:i + 1] try: return literal_eval(dict_string) except ValueError as e: print(f"Error parsing dictionary: {e}") return None print("No dictionary found in the string.") return None
def get_table_from_test_set(image_file) -> str:
table_path = ocr('images', 'images', image_file) loader = UnstructuredExcelLoader(table_path, mode="elements") docs = loader.load() return docs[0]
def get_table_from_test_set_by_table_id(table_id: str) -> str:
table_path = ocr('images', f"./test_png/{table_id}.png") loader = UnstructuredExcelLoader(table_path, mode="elements") docs = loader.load() return docs[0]
def process_question(self, question, image_file):
table = get_table_from_test_set(image_file) output = chain_main.invoke({"question": question, "table": table}) # _memory.save_context({"human_input": question},{"context": output}) return output
def route(self, info):
if "simple" in str(info["question_type"]): return chain_simple_extraction else: return chain_complex
boto3_session = boto3.Session(region_name='us-east-1') bedrock_runtime = boto3_session.client(service_name="bedrock-runtime") llm = ChatBedrock(client=bedrock_runtime,model_id="anthropic.claude-3-sonnet-20240229-v1:0",
model_kwargs={'temperature': 0},streaming=True,)
python_repl = PythonREPL() repl_tool = Tool(name="python_repl",
description="A Python shell. Use this to execute python commands. " "Input should be a valid python command. If you want to see the output " "of a value, you should print it out with `print(...)`.", func=python_repl.run, )
tools = [repl_tool] agent = create_react_agent(llm, tools, agent_prompt) agent_executor = AgentExecutor(agent=agent, tools=tools, verbose=True) chain_simple_extraction = ({"question": itemgetter("question"), "table": itemgetter("table")}
| simple_extraction_prompt | llm | RunnableLambda(read_message) | lit_eval)
chain_complex_extraction = ({"decomp_dict": itemgetter("decomp_dict") | RunnableLambda(extract_dict),
"table": itemgetter("table")} | complex_extraction_prompt | llm | RunnableLambda(read_message))
chain_simple_or_complex = ({"question": itemgetter("question"), "table": itemgetter("table")}
| simple_or_complex_prompt | llm | RunnableLambda(read_message))
chain_decompose = ({"question": itemgetter("question")} | decomp_prompt | llm | extract_dictionary)
chain_complex = (RunnablePassthrough.assign(decomp_dict=chain_decompose)
| RunnablePassthrough.assign(data=chain_complex_extraction) | RunnablePassthrough.assign(query=lambda x: load_data_to_query(x["question"], x['data'])) | {"input": itemgetter("query")} | (RunnablePassthrough.assign(response=agent_executor)))
qa_agent = QuestionAnsweringAgent()
output = qa_agent.process_question(question=question, image_file=image)