Kotoba: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
import os | import os | ||
import | from streamlit_interface import st | ||
import chatbot_utils as c_t | |||
from langchain_core.chat_history import BaseChatMessageHistory | |||
from | |||
import | |||
modL = ["gpt-4o@openai","gpt-4-turbo@openai","gpt-3.5-turbo@openai","mixtral-8x7b-instruct-v0.1@aws-bedrock","llama-2-70b-chat@aws-bedrock","codellama-34b-instruct@together-ai","gemma-7b-it@fireworks-ai","claude-3-haiku@anthropic","claude-3-opus@anthropic","claude-3-sonnet@anthropic","mistral-7b-instruct-v0.1@fireworks-ai","mistral-7b-instruct-v0.2@fireworks-ai"] | |||
dynamic_provider = ["lowest-input-cost", "lowest-output-cost", "lowest-itl", "lowest-ttft", "highest-tks-per-sec"] | |||
model_reset_dict = {"slider_model_temperature": "model_temperature"} | |||
splitter_reset_dict = {"slider_chunk_size": "chunk_size","slider_chunk_overlap": "chunk_overlap"} | |||
retriever_reset_dict = {"slider_k": "k","slider_fetch_k": "fetch_k","slider_lambda_mult": "lambda_mult","slider_score_threshold": "score_threshold"} | |||
model_max_context_limit = {"mixtral-8x7b-instruct-v0.1": 32000,"llama-2-70b-chat": 4096,"llama-2-13b-chat": 4096,"mistral-7b-instruct-v0.2": 8192,"llama-2-7b-chat": 4096,"codellama-34b-instruct": 4096,"gemma-7b-it": 8192,"mistral-7b-instruct-v0.1": 512,"mixtral-8x22b-instruct-v0.1": 65536,"codellama-13b-instruct": 4096,"codellama-7b-instruct": 4096,"yi-34b-chat": 4096,"llama-3-8b-chat": 8192,"llama-3-70b-chat": 8192,"pplx-7b-chat": 4096,"mistral-medium": 32000,"gpt-4o": 32000,"gpt-4": 32000,"pplx-70b-chat": 4096,"gpt-3.5-turbo": 16000,"deepseek-coder-33b-instruct": 16000,"gemma-2b-it": 8192,"gpt-4-turbo": 128000,"mistral-small": 32000,"mistral-large": 32000,"claude-3-haiku": 200000,"claude-3-opus": 200000,"claude-3-sonnet": 200000} | |||
baseDir = os.environ['HOME'] + '/lav/dauvi/portfolio/audit/' | |||
#---------------------------------------------------UI-------------------------------------------------- | |||
def clear_history(): | |||
"""Clears the history stored in the session state.""" | |||
if "store" in st.session_state: | |||
st.session_state.store = {} | |||
if "messages" in st.session_state: | |||
st.session_state.messages = [] | |||
def cite_response(): | |||
"""Cite a reference.""" | |||
messL = st.session_state.messages | |||
query = messL[-1][0] | |||
retriever = get_retriever() | |||
docL = retriever.get_relevant_documents(query) | |||
docT = [x.page_content for x in docL] | |||
docS = "Following list of original documents\n\n" | |||
for i,s in enumerate(docT): | |||
docS += "-------- Citation " + str(i+1) + " )\n\n" + s | |||
st.session_state.messages.append(("Citations for: " + query,docS)) | |||
def output_chunks(chain, query): | |||
"""Generates answers for the given query and a chain. | |||
Args: | |||
chain: The chain given by the user selection. | |||
query: The query to generate answers for. | |||
Yields: | |||
str: The generated answer. | |||
""" | |||
for chunk in chain.stream( | |||
{"input": query}, | |||
config={"configurable": {"session_id": "abc123"}} | |||
): | |||
if "answer" in chunk.keys(): | |||
yield chunk["answer"] | |||
def get_history(session_id: str): | |||
""" | |||
Retrieves the chat history for a given session. | |||
Parameters: | |||
session_id (str): The ID of the session. | |||
Returns: | |||
BaseChatMessageHistory: The chat history for the provided session ID. | |||
""" | |||
if session_id not in st.session_state.store: | |||
st.session_state.store[session_id] = c_t.get_chat_message() | |||
return st.session_state.store[session_id] | |||
def field_callback(field): | |||
"""Displays a toast message when a field is updated.""" | |||
st.toast(f"{field} Updated Successfully!", icon="🎉") | |||
def process_inputs(): | |||
"""Processes the user inputs and performs vector storage.""" | |||
if not st.session_state.unify_api_key or not st.session_state.endpoint or not st.session_state.pdf_docs: | |||
st.warning("Please enter the missing fields and upload your pdf document(s)") | |||
else: | |||
with st.status("Processing Document(s)"): | |||
st.write("Extracting Text") | |||
docL = c_t.pdf_page(st.session_state.pdf_docs,chunk_size=st.session_state.chunk_size,chunk_overlap=st.session_state.chunk_overlap) | |||
st.write("Splitting Text") | |||
st.write("Performing Vector Storage") | |||
if st.session_state.vector_selection == "FAISS": | |||
st.session_state.vector_store = c_t.faiss_vector_storage(docL,collN="web",baseDir=baseDir) | |||
if st.session_state.vector_selection == "chromadb": | |||
st.session_state.vector_store = c_t.create_collection(docL,collN="web",baseDir=baseDir) | |||
elif st.session_state.vector_selection == "Pinecone": | |||
st.session_state.vector_store = c_t.pinecone_vector_storage(docL) | |||
st.session_state.processed_input = True | |||
st.success('File(s) Submitted successfully!') | |||
def reset_slider_value(reset_dict): | |||
'''Resets the value of sliders in the session state.''' | |||
for key, value in reset_dict.items(): | |||
del st.session_state[value] | |||
init_keys() | |||
st.session_state[key] = st.session_state[value] | |||
def get_retriever(): | |||
""" Creates a retriever using the vector store in the session state and the selected search parameters.""" | |||
if st.session_state.search_type == "similarity": | |||
st.session_state.search_kwargs = {"k": st.session_state.k} | |||
elif st.session_state.search_type == "similarity_score_threshold": | |||
st.session_state.search_kwargs = { | |||
"k": st.session_state.k, | |||
"score_threshold": st.session_state.score_threshold | |||
} | |||
elif st.session_state.search_type == "mmr": | |||
st.session_state.search_kwargs = { | |||
"k": st.session_state.k, | |||
"fetch_k": st.session_state.fetch_k, | |||
"lambda_mult": st.session_state.lambda_mult | |||
} | } | ||
retriever = st.session_state.vector_store.as_retriever( | |||
search_type=st.session_state.search_type, | |||
search_kwargs=st.session_state.search_kwargs | |||
) | |||
return retriever | |||
def agent_definition(): | |||
agentDef = "You are an assistant for question-answering tasks." | |||
if st.session_state.agent_selection == "👶 simple": | |||
agentDef = "You are an assistant who is able to interact with a child." | |||
elif st.session_state.agent_selection == "🧑🎓 academic": | |||
agentDef = "You are an assistant providing academic level of answers." | |||
elif st.session_state.agent_selection == "🧑🔧 technical": | |||
agentDef = "You are a technical expert explaining the solution in detail" | |||
elif st.session_state.agent_selection == "🧑🏫 didactic": | |||
agentDef = "You are a teacher explaining in a didactic way to a large audience" | |||
elif st.session_state.agent_selection == "🤖 concise": | |||
agentDef = "You are a really concise assistant provinding answers in few words." | |||
return agentDef + "\n" | |||
def chat_bot(): | |||
""" Takes user queries and generates responses. It writes the user query and the response to the chat window.""" | |||
if query := st.chat_input("Ask your document anything...", key="query"): | |||
if "processed_input" not in st.session_state: | |||
st.warning("Please input your details in the sidebar first") | |||
return | |||
st.chat_message("human").write(query) | |||
if "vector_store" not in st.session_state: | |||
process_inputs() | |||
retriever = get_retriever() | |||
model = c_t.get_llm() | |||
agentDef = agent_definition() | |||
if not st.session_state.history_unaware: | |||
rag_engine = c_t.create_conversational_rag_chain(model, retriever, get_history, agentDef) | |||
else: | else: | ||
rag_engine = c_t.create_qa_chain(model, retriever, agentDef) | |||
response = st.chat_message("assistant").write_stream(output_chunks(rag_engine, query)) | |||
if not st.session_state.history_unaware: | |||
st.session_state.messages.append((query, response)) | |||
Revision as of 12:10, 6 November 2024
import os from streamlit_interface import st import chatbot_utils as c_t from langchain_core.chat_history import BaseChatMessageHistory
modL = ["gpt-4o@openai","gpt-4-turbo@openai","gpt-3.5-turbo@openai","mixtral-8x7b-instruct-v0.1@aws-bedrock","llama-2-70b-chat@aws-bedrock","codellama-34b-instruct@together-ai","gemma-7b-it@fireworks-ai","claude-3-haiku@anthropic","claude-3-opus@anthropic","claude-3-sonnet@anthropic","mistral-7b-instruct-v0.1@fireworks-ai","mistral-7b-instruct-v0.2@fireworks-ai"] dynamic_provider = ["lowest-input-cost", "lowest-output-cost", "lowest-itl", "lowest-ttft", "highest-tks-per-sec"] model_reset_dict = {"slider_model_temperature": "model_temperature"} splitter_reset_dict = {"slider_chunk_size": "chunk_size","slider_chunk_overlap": "chunk_overlap"} retriever_reset_dict = {"slider_k": "k","slider_fetch_k": "fetch_k","slider_lambda_mult": "lambda_mult","slider_score_threshold": "score_threshold"} model_max_context_limit = {"mixtral-8x7b-instruct-v0.1": 32000,"llama-2-70b-chat": 4096,"llama-2-13b-chat": 4096,"mistral-7b-instruct-v0.2": 8192,"llama-2-7b-chat": 4096,"codellama-34b-instruct": 4096,"gemma-7b-it": 8192,"mistral-7b-instruct-v0.1": 512,"mixtral-8x22b-instruct-v0.1": 65536,"codellama-13b-instruct": 4096,"codellama-7b-instruct": 4096,"yi-34b-chat": 4096,"llama-3-8b-chat": 8192,"llama-3-70b-chat": 8192,"pplx-7b-chat": 4096,"mistral-medium": 32000,"gpt-4o": 32000,"gpt-4": 32000,"pplx-70b-chat": 4096,"gpt-3.5-turbo": 16000,"deepseek-coder-33b-instruct": 16000,"gemma-2b-it": 8192,"gpt-4-turbo": 128000,"mistral-small": 32000,"mistral-large": 32000,"claude-3-haiku": 200000,"claude-3-opus": 200000,"claude-3-sonnet": 200000} baseDir = os.environ['HOME'] + '/lav/dauvi/portfolio/audit/'
- ---------------------------------------------------UI--------------------------------------------------
def clear_history():
"""Clears the history stored in the session state.""" if "store" in st.session_state: st.session_state.store = {} if "messages" in st.session_state: st.session_state.messages = []
def cite_response():
"""Cite a reference.""" messL = st.session_state.messages query = messL[-1][0] retriever = get_retriever() docL = retriever.get_relevant_documents(query) docT = [x.page_content for x in docL] docS = "Following list of original documents\n\n" for i,s in enumerate(docT): docS += "-------- Citation " + str(i+1) + " )\n\n" + s st.session_state.messages.append(("Citations for: " + query,docS))
def output_chunks(chain, query):
"""Generates answers for the given query and a chain.
Args: chain: The chain given by the user selection. query: The query to generate answers for.
Yields: str: The generated answer. """ for chunk in chain.stream( {"input": query}, config={"configurable": {"session_id": "abc123"}} ): if "answer" in chunk.keys(): yield chunk["answer"]
def get_history(session_id: str):
""" Retrieves the chat history for a given session. Parameters: session_id (str): The ID of the session. Returns: BaseChatMessageHistory: The chat history for the provided session ID. """ if session_id not in st.session_state.store: st.session_state.store[session_id] = c_t.get_chat_message() return st.session_state.store[session_id]
def field_callback(field):
"""Displays a toast message when a field is updated.""" st.toast(f"{field} Updated Successfully!", icon="🎉")
def process_inputs():
"""Processes the user inputs and performs vector storage.""" if not st.session_state.unify_api_key or not st.session_state.endpoint or not st.session_state.pdf_docs: st.warning("Please enter the missing fields and upload your pdf document(s)") else: with st.status("Processing Document(s)"): st.write("Extracting Text") docL = c_t.pdf_page(st.session_state.pdf_docs,chunk_size=st.session_state.chunk_size,chunk_overlap=st.session_state.chunk_overlap) st.write("Splitting Text") st.write("Performing Vector Storage") if st.session_state.vector_selection == "FAISS": st.session_state.vector_store = c_t.faiss_vector_storage(docL,collN="web",baseDir=baseDir) if st.session_state.vector_selection == "chromadb": st.session_state.vector_store = c_t.create_collection(docL,collN="web",baseDir=baseDir) elif st.session_state.vector_selection == "Pinecone": st.session_state.vector_store = c_t.pinecone_vector_storage(docL)
st.session_state.processed_input = True st.success('File(s) Submitted successfully!')
def reset_slider_value(reset_dict):
Resets the value of sliders in the session state. for key, value in reset_dict.items(): del st.session_state[value] init_keys() st.session_state[key] = st.session_state[value]
def get_retriever():
""" Creates a retriever using the vector store in the session state and the selected search parameters.""" if st.session_state.search_type == "similarity": st.session_state.search_kwargs = {"k": st.session_state.k} elif st.session_state.search_type == "similarity_score_threshold": st.session_state.search_kwargs = { "k": st.session_state.k, "score_threshold": st.session_state.score_threshold } elif st.session_state.search_type == "mmr": st.session_state.search_kwargs = { "k": st.session_state.k, "fetch_k": st.session_state.fetch_k, "lambda_mult": st.session_state.lambda_mult } retriever = st.session_state.vector_store.as_retriever( search_type=st.session_state.search_type, search_kwargs=st.session_state.search_kwargs ) return retriever
def agent_definition():
agentDef = "You are an assistant for question-answering tasks." if st.session_state.agent_selection == "👶 simple": agentDef = "You are an assistant who is able to interact with a child." elif st.session_state.agent_selection == "🧑🎓 academic": agentDef = "You are an assistant providing academic level of answers." elif st.session_state.agent_selection == "🧑🔧 technical": agentDef = "You are a technical expert explaining the solution in detail" elif st.session_state.agent_selection == "🧑🏫 didactic": agentDef = "You are a teacher explaining in a didactic way to a large audience" elif st.session_state.agent_selection == "🤖 concise": agentDef = "You are a really concise assistant provinding answers in few words." return agentDef + "\n"
def chat_bot():
""" Takes user queries and generates responses. It writes the user query and the response to the chat window.""" if query := st.chat_input("Ask your document anything...", key="query"): if "processed_input" not in st.session_state: st.warning("Please input your details in the sidebar first") return
st.chat_message("human").write(query) if "vector_store" not in st.session_state: process_inputs()
retriever = get_retriever() model = c_t.get_llm() agentDef = agent_definition() if not st.session_state.history_unaware: rag_engine = c_t.create_conversational_rag_chain(model, retriever, get_history, agentDef) else: rag_engine = c_t.create_qa_chain(model, retriever, agentDef) response = st.chat_message("assistant").write_stream(output_chunks(rag_engine, query)) if not st.session_state.history_unaware: st.session_state.messages.append((query, response))