|
|
(9 intermediate revisions by the same user not shown) |
Line 1: |
Line 1: |
| import os, re, sys, json, base64, string
| | Kotoba |
| import kotoba.chatbot_prompt as c_p
| |
| import boto3
| |
| from langchain import hub
| |
| from langchain.text_splitter import RecursiveCharacterTextSplitter, MarkdownTextSplitter, MarkdownHeaderTextSplitter
| |
| from langchain_aws import ChatBedrock
| |
| from langchain.prompts import ChatPromptTemplate, PromptTemplate
| |
| from langchain_core.runnables import RunnablePassthrough, RunnableLambda
| |
| from langchain_core.runnables.history import RunnableWithMessageHistory
| |
| from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
| |
| from langchain_core.output_parsers import StrOutputParser
| |
| from langchain_core.chat_history import BaseChatMessageHistory
| |
| from langchain_huggingface import HuggingFaceEmbeddings
| |
| from langchain_openai import OpenAIEmbeddings
| |
| from langchain.embeddings import BedrockEmbeddings
| |
| #from chromadb.utils.embedding_functions import create_langchain_embedding
| |
| #from langchain.chat_models import ChatOpenAI
| |
| from langchain_community.chat_models import ChatOpenAI
| |
| #from langchain_community.embeddings import HuggingFaceEmbeddings
| |
| from langchain_core.documents import Document # with .page_content
| |
| #from llama_index.core import Document # with .text
| |
| from langchain.chains.combine_documents import create_stuff_documents_chain
| |
| from langchain.chains.history_aware_retriever import create_history_aware_retriever
| |
| from langchain.chains.retrieval import create_retrieval_chain
| |
| # from langchain.chains import create_retrieval_chain
| |
| from langchain_community.chat_message_histories import ChatMessageHistory
| |
| from langchain_community.chat_models import ChatOpenAI
| |
| from llama_index.core.node_parser import SimpleFileNodeParser, MarkdownElementNodeParser
| |
| from llama_parse import LlamaParse
| |
| from llama_index.core import SimpleDirectoryReader, load_index_from_storage, VectorStoreIndex, StorageContext
| |
| import chromadb
| |
| import kotoba.pdf_tools as p_t
| |
| #from langchain_pinecone import PineconeVectorStore
| |
| #--------------------------------------parse-pdf--------------------------------------------------
| |
| | |
| try:
| |
| import pymupdf as fitz # available with v1.24.3
| |
| except ImportError:
| |
| import fitz
| |
| from pymupdf4llm.helpers.get_text_lines import get_raw_lines, is_white
| |
| from pymupdf4llm.helpers.multi_column import column_boxes
| |
| | |
| def pdf2tree(pdf_doc):
| |
| """Extracts text from PDF.
| |
| Args:
| |
| pdf_docs: A PDF document.
| |
| Returns:
| |
| str: The extracted text from the PDF documents.
| |
| """
| |
| from llmsherpa.readers import LayoutPDFReader
| |
| llmsherpa_api_url = "https://readers.llmsherpa.com/api/document/developer/parseDocument?renderFormat=all"
| |
| pdf_reader = LayoutPDFReader(llmsherpa_api_url)
| |
| doc = pdf_reader.read_pdf(pdf_doc)
| |
| docL = []
| |
| for s in doc.sections():
| |
| sectS = ''
| |
| for p in s.children:
| |
| sectS += p.to_text()
| |
| if sectS == '':
| |
| sectS = '-'
| |
| docL.append(Document(page_content=sectS,metadata={"sect":s.to_context_text(),"lev":s.level}))
| |
| for t in doc.tables():
| |
| docL.append(Document(page_content=t.to_text(),metadata={"table":s.block_idx,"lev":t.level}))
| |
| return docL
| |
| | |
| def pdf2md(pdf_doc,headers_split=None):
| |
| """Extracts text from PDF.
| |
| Args:
| |
| pdf_doc: A PDF document.
| |
| Returns:
| |
| str: The extracted text from the PDF documents.
| |
| """
| |
| #from langchain_community.document_loaders import PyMuPDFLoader
| |
| import pymupdf4llm
| |
| import pymupdf
| |
| # hdr_info=lambda s: ... to find the most popular font sizes and derive header levels based on them
| |
| imgDir = pdf_doc.split(".")[0] + "/"
| |
| collN = re.sub(".pdf","",pdf_doc).split("/")[-1]
| |
| hdr_info = p_t.IdentifyHeaders(pdf_doc)
| |
| md_text = pymupdf4llm.to_markdown(pdf_doc,write_images=True,image_path=imgDir,page_chunks=False,hdr_info=hdr_info)
| |
| # parser = LlamaParse(api_key="...",result_type="markdown")
| |
| # documents = parser.load_data("./my_file.pdf")
| |
| #single_sentences_list = re.split(r'(?<=[.?!])\s+', essay)
| |
| if headers_split == None:
| |
| headers_split = [("#","Chapter"),("##","Section"),('###','Subsection')]
| |
| headers_split = [("####","Chapter"),("######","Section"),('########','Subsection')]
| |
| splitter = MarkdownHeaderTextSplitter(headers_to_split_on=headers_split)#,strip_headers=True,return_each_line=False,)
| |
| docL = splitter.split_text(md_text)
| |
| for i,d in enumerate(docL):
| |
| titleS = "Document: " + collN + "\n".join([x + ": " + d.metadata[x] for x in d.metadata.keys()])
| |
| textS = titleS + "\n" + d.page_content
| |
| docL[i].page_content = textS
| |
| #splitter = RecursiveCharacterTextSplitter(chunk_size = 1000, chunk_overlap=200)
| |
| #splitter = SentenceSplitter(chunk_size=200,chunk_overlap=15)
| |
| #elements = partition_pdf(filename=pdf_doc,strategy="hi_res",infer_table_structure=True,model_name="yolox")
| |
| return docL
| |
| | |
| def pdf_llama(pdf_doc,collN):
| |
| os.environ["LLAMA_CLOUD_API_KEY"] = "llx-"
| |
| llm = get_llm()
| |
| parsing_instructions = '''The document describes IT security policies for audit. It contains many tables. Answer questions using the information in this article and be precise.'''
| |
| documents = LlamaParse(result_type="markdown", parsing_instructions=parsing_instructions).load_data(pdf_doc)
| |
| print(documents[0].text[:1000])
| |
| node_parser = MarkdownElementNodeParser(llm=llm, num_workers=8).from_defaults()
| |
| nodes = node_parser.get_nodes_from_documents(documents)
| |
| base_nodes, objects = node_parser.get_nodes_and_objects(nodes)
| |
| return base_nodes, objects
| |
| | |
| def pdf_page(pdf_docs,chunk_size=100,chunk_overlap=15):
| |
| """Extracts text from PDF documents.
| |
| Args:
| |
| pdf_docs: A list of PDF documents.
| |
| | |
| Returns:
| |
| str: The extracted text from the PDF documents.
| |
| """
| |
| from PyPDF2 import PdfReader
| |
| text = ""
| |
| docL = []
| |
| for pdf in pdf_docs:
| |
| pdf_reader = PdfReader(pdf)
| |
| for i, page in enumerate(pdf_reader.pages):
| |
| text = page.extract_text()
| |
| docL.append(Document(page_content=text,metadata={"page":i}))
| |
| # text_splitter = RecursiveCharacterTextSplitter(chunk_size=chunk_size,chunk_overlap=chunk_overlap)
| |
| # text_chunks = text_splitter.split_text(textL)
| |
| return docL
| |
| | |
| #--------------------------------------llm-opeerations--------------------------------------------------
| |
| | |
| def create_summary(textL,llm):
| |
| chain = ({"doc": lambda x: x}
| |
| | ChatPromptTemplate.from_template("Summarize the following document:\n\n{doc}")
| |
| # | ChatOpenAI(max_retries=0)
| |
| | llm
| |
| | StrOutputParser())
| |
| summL = chain.batch(textL, {"max_concurrency": 5})
| |
| return summL
| |
| | |
| def ask_openai(q,retL):
| |
| chain = ({"doc": lambda x: x}
| |
| | ChatPromptTemplate.from_template("The following document answers "+q+":\n\n{doc} \n\n Answer your confidence")
| |
| | ChatOpenAI(max_retries=0)
| |
| | StrOutputParser())
| |
| summaries = chain.batch(retL, {"max_concurrency": 5})
| |
| return summaries
| |
| | |
| def ask_bedrock_image(f,baseDir):
| |
| client = boto3.client("bedrock-runtime", region_name="us-east-1")
| |
| model_id = "amazon.titan-text-lite-v1"
| |
| with open(baseDir + "/" + f, 'rb') as image_file:
| |
| encoded_image = base64.b64encode(image_file.read()).decode()
| |
| | |
| model_id = "anthropic.claude-3-haiku-20240307-v1:0"
| |
| payload = {"messages": [{"role": "user","content": [{"type": "image","source": {"type": "base64","media_type": "image/jpeg","data": encoded_image}},{"type": "text","text": "Describe the content of this image"}]}],"max_tokens": 1000,"anthropic_version": "bedrock-2023-05-31"}
| |
| response = client.invoke_model(modelId=model_id,contentType="application/json",body=json.dumps(payload))
| |
| output_binary = response["body"].read()
| |
| output_json = json.loads(output_binary)
| |
| output = output_json["content"][0]["text"]
| |
| return output
| |
| | |
| def image_description(baseDir,fL):
| |
| imgL = []
| |
| for f in fL:
| |
| print(f)
| |
| caption = ask_bedrock_image(f,baseDir)
| |
| imgL.append(Document(page_content=caption,metadata={"image_file":f}))
| |
| return imgL
| |
| | |
| | |
| def rank_openai(resL):
| |
| doc = ".".join([str(i) + ") " + x for i,x in enumerate(resL)])
| |
| chain = ({"doc": lambda x: x}
| |
| | ChatPromptTemplate.from_template("What answer is the most confident in the following series:\n\n{doc}")
| |
| | ChatOpenAI(max_retries=0)
| |
| | StrOutputParser())
| |
| summaries = chain.batch([doc], {"max_concurrency": 1})
| |
| return summaries
| |
| | |
| def get_llm():
| |
| llm = ChatOpenAI()
| |
| return llm
| |
| | |
| def get_llm_bedrock(model_id="anthropic.claude-3-sonnet-20240229-v1:0"):
| |
| boto3_session = boto3.Session(region_name='us-east-1')
| |
| bedrock_runtime = boto3_session.client(service_name="bedrock-runtime")
| |
| llm = ChatBedrock(client=bedrock_runtime,model_id=model_id,
| |
| model_kwargs={'temperature': 0},streaming=True,)
| |
| return llm
| |
| | |
| def get_embeddings_bedrock():
| |
| bedrock_client = boto3.client(service_name='bedrock-runtime',region_name='us-east-1')
| |
| bedrock_embeddings = BedrockEmbeddings(model_id="amazon.titan-embed-text-v1",client=bedrock_client)
| |
| return bedrock_embeddings
| |
| | |
| def get_embeddings_openai():
| |
| openai_ef = embedding_functions.OpenAIEmbeddingFunction(model_name="text-embedding-ada-002",api_key=os.environ['OPENAI_API_KEY'])
| |
| return openai_ef
| |
| | |
| def get_embeddings_hugging():
| |
| langchain_embeddings = HuggingFaceEmbeddings(model_name="all-MiniLM-L6-v2")
| |
| embeddings = create_langchain_embedding(langchain_embeddings)
| |
| return embeddings
| |
| | |
| def get_embeddings():
| |
| """pointer to preferred option"""
| |
| #return get_embeddings_bedrock()
| |
| return get_embeddings_hugging()
| |
| | |
| def get_chat_history(retriever):
| |
| rephrase_prompt = hub.pull("langchain-ai/chat-langchain-rephrase")
| |
| llm = ChatOpenAI()
| |
| chain = create_history_aware_retriever(llm, retriever, rephrase_prompt)
| |
| #chain.invoke({"input": "...", "chat_history": })
| |
| return chain
| |
| | |
| def get_chat_message() -> BaseChatMessageHistory:
| |
| return ChatMessageHistory()
| |
| | |
| #--------------------------------------vector-storage--------------------------------------------------
| |
| | |
| def embed_text(docL):
| |
| try:
| |
| textL = [x.page_content for x in docL]
| |
| except:
| |
| textL = [x.text for x in docL]
| |
| embeddings = get_embeddings()
| |
| embdL = embeddings.embed_documents(textL)
| |
| return embdL
| |
| | |
| def create_collection(docL,collN,baseDir):
| |
| """create two collections from a pdf.
| |
| Args:
| |
| pdf_doc: A PDF document.
| |
| Returns:
| |
| collT: collection of texts
| |
| """
| |
| #from langchain.vectorstores import Chroma
| |
| #from langchain_community.vectorstores import Chroma
| |
| from langchain_chroma import Chroma
| |
| from chromadb.utils import embedding_functions
| |
| idL = ["%06d" % x for x in range(len(docL))]
| |
| try:
| |
| textL = [x.page_content for x in docL]
| |
| except:
| |
| textL = [x.text for x in docL]
| |
| metaL = [x.metadata for x in docL]
| |
| for i in range(len(docL)):
| |
| metaL[i]['id'] = idL[i]
| |
| client = chromadb.PersistentClient(path=baseDir + "/chroma")
| |
| embeddings = get_embeddings()
| |
| # embdL = embeddings.embed_documents(textL)
| |
| try:
| |
| client.delete_collection(name=collN)
| |
| except:
| |
| pass
| |
| collT = client.create_collection(name=collN,metadata={"hnsw:space":"cosine"},embedding_function=embeddings)
| |
| #collT.add(embeddings=embdL,documents=textL,metadatas=metaL,ids=idL)
| |
| collT.add(documents=textL,metadatas=metaL,ids=idL)
| |
| return collT
| |
| | |
| def load_chroma(collN,baseDir):
| |
| client = chromadb.PersistentClient(path=baseDir + "/chroma")
| |
| collT = client.get_or_create_collection(name=collN,metadata={"hnsw:space":"cosine","hnsw:M": 32})
| |
| return collT
| |
| | |
| def get_chroma_retriever(collN,baseDir):
| |
| client = chromadb.PersistentClient(path=baseDir + "chroma/")
| |
| col = client.get_or_create_collection(collN)
| |
| embeddings = get_embeddings()
| |
| db = Chroma(client=client, collection_name=collN, embedding_function=embeddings)
| |
| retriever = db.as_retriever()
| |
| return retriever
| |
| | |
| def list_collection(baseDir):
| |
| client = chromadb.PersistentClient(path=baseDir + "chroma/")
| |
| collL = [c.name for c in client.list_collections()]
| |
| print(collL)
| |
| return collL
| |
| | |
| def create_neo4j(docL,collN,baseDir,neopass):
| |
| from neo4j import GraphDatabase
| |
| from neo4j_graphrag.indexes import create_vector_index
| |
| from neo4j_graphrag.indexes import upsert_vector
| |
| driver = GraphDatabase.driver("neo4j://localhost:7687", auth=("neo4j",neopass))
| |
| create_vector_index(driver,collN,label="Chunk",embedding_property="embedding",dimensions=3072,similarity_fn="euclidean")
| |
| try:
| |
| textL = [x.page_content for x in docL]
| |
| except:
| |
| textL = [x.text for x in docL]
| |
| metaL = [x.metadata for x in docL]
| |
| client = chromadb.PersistentClient(path=baseDir + "/chroma")
| |
| embeddings = get_embeddings()
| |
| embdL = embeddings.embed_documents(textL)
| |
| upsert_vector(driver,node_id=0,embedding_property="embedding",vector=embdL,)
| |
| driver.close()
| |
| | |
| def search_neo4j(q,llm,collN,neopass):
| |
| from neo4j import GraphDatabase
| |
| from neo4j_graphrag.generation import GraphRAG
| |
| from neo4j_graphrag.retrievers import VectorRetriever
| |
| driver = GraphDatabase.driver("neo4j://localhost:7687", auth=("neo4j",neopass))
| |
| embeddings = get_embeddings()
| |
| retriever = VectorRetriever(driver, collN, embeddings)
| |
| rag = GraphRAG(retriever=retriever, llm=llm)
| |
| #qV = embeddings.embed_documents(q)
| |
| response = rag.search(query_text=q, retriever_config={"top_k": 5})
| |
| driver.close()
| |
| return response
| |
|
| |
| def faiss_vector_storage(docL,collN,baseDir):
| |
| """Creates a FAISS vector store from the given text chunks.
| |
| Args:
| |
| text_chunks: A list of text chunks to be vectorized.
| |
| Returns:
| |
| FAISS: A FAISS vector store.
| |
| """
| |
| from llama_index.vector_stores.faiss import FaissVectorStore
| |
| from langchain_community.vectorstores import FAISS
| |
| # from langchain.vectorstores import FAISS
| |
| # from langchain.indexes.vectorstore import VectorStoreIndexWrapper
| |
| import faiss
| |
| try:
| |
| textL = [x.text for x in docL]
| |
| except:
| |
| textL = [x.page_content for x in docL]
| |
| metaL = [x.metadata for x in docL]
| |
| faiss_index = faiss.IndexFlatL2(1536) # dimensions of text-ada-embedding-002
| |
| embeddings = get_embeddings()
| |
| # vectorstore_faiss = FAISS.from_documents(docs,bedrock_embeddings)
| |
| # Store the Faiss index to a file
| |
| # faiss.write_index(vectorstore_faiss.index, "../../data/index/prompt_embeddings.index")
| |
| vector_store = FAISS.from_texts(textL, embedding=embeddings)
| |
| vector_store.save_local(baseDir + "faiss/" + collN)
| |
| #vector_store = FaissVectorStore(faiss_index=faiss_index)
| |
| #storage_context = StorageContext.from_defaults(vector_store=vector_store)
| |
| #index = VectorStoreIndex.from_documents(docL, storage_context=storage_context)
| |
| #index.storage_context.persist(persist_dir=baseDir+"./faiss")
| |
| #return index
| |
| return vector_store
| |
| | |
| def qdrant_vector_storage(docL,collN,baseDir):
| |
| """Creates a qdrant vector store from the given text chunks.
| |
| Args:
| |
| docL: document list
| |
| collN: collection name
| |
| baseDir: directory for persistent storage
| |
| Returns:
| |
| A vector store.
| |
| """
| |
| from qdrant_client import QdrantClient
| |
| from qdrant_client.models import PointStruct
| |
| client = QdrantClient(host="localhost", port=6333)
| |
| if not client.collection_exists(collN):
| |
| client.create_collection(collection_name=collN,vectors_config=VectorParams(size=100, distance=Distance.COSINE))
| |
| pointL = [PointStruct(id=idx,vector=vector.tolist(),payload={"color": "red", "rand_number": idx % 10})]
| |
| for idx, vector in enumerate(docL):
| |
| client.upsert(collection_name=collN,points=pointL)
| |
| #hits = client.search(collection_name=collN,query_vector=query_vector,limit=5)
| |
| return client
| |
| | |
| def elastic_vector_storage(docL,collN,baseDir):
| |
| """Creates a elasticsearch vector store from the given text chunks.
| |
| Args:
| |
| text_chunks: A list of text chunks to be vectorized.
| |
| Returns:
| |
| elastic search vector store.
| |
| """
| |
| from llama_index.vector_stores.elasticsearch import ElasticsearchStore, AsyncDenseVectorStrategy
| |
| from llama_index.core import StorageContext, VectorStoreIndex
| |
| vector_store = ElasticsearchStore(index_name=collN,es_url="http://localhost:9200",retrieval_strategy=AsyncDenseVectorStrategy())
| |
| storage_context = StorageContext.from_defaults(vector_store=vector_store)
| |
| index = VectorStoreIndex(docL, storage_context=storage_context)
| |
| # retriever = index.as_retriever()
| |
| # results = retriever.retrieve(query)
| |
| # query_engine = index.as_query_engine()
| |
| # response = query_engine.query(query)
| |
| return index
| |
| | |
| def load_faiss(collN,baseDir):
| |
| embeddings = get_embeddings()
| |
| vector_store = FAISS.load_local(baseDir+"faiss/"+collN, embeddings, allow_dangerous_deserialization=True)
| |
| vector_store = FaissVectorStore.from_persist_dir(baseDir+"faiss/"+collN)
| |
| storage_context = StorageContext.from_defaults(vector_store=vector_store, persist_dir=baseDir+"faiss/"+collN)
| |
| index = load_index_from_storage(storage_context=storage_context)
| |
| return index
| |
| | |
| | |
| def pinecone_vector_storage(pdf_doc,baseDir):
| |
| """Creates a Pinecone vector store from the given text chunks.
| |
| Args:
| |
| text_chunks: A list of text chunks to be vectorized.
| |
| Returns:
| |
| PineconeVectorStore: A Pinecone vector store.
| |
| """
| |
| vector_store = None
| |
| os.environ['PINECONE_API_KEY'] = st.session_state.pinecone_api_key
| |
| if st.session_state.embedding_model == "HuggingFaceEmbeddings":
| |
| embeddings = HuggingFaceEmbeddings(model_name="all-MiniLM-L6-v2")
| |
| try:
| |
| # Clear existing index data if there's any
| |
| PineconeVectorStore.from_existing_index(
| |
| index_name=st.session_state.pinecone_index,
| |
| embedding=embeddings
| |
| ).delete(delete_all=True)
| |
| except Exception as e:
| |
| print("The index is empty")
| |
| finally:
| |
| vector_store = PineconeVectorStore.from_texts(
| |
| text_chunks,
| |
| embedding=embeddings,
| |
| index_name=st.session_state.pinecone_index
| |
| )
| |
| return vector_store
| |
|
| |
| #--------------------------------------chains--------------------------------------------------
| |
| | |
| def section_summary(docL,llm):
| |
| """create two collections from a pdf, chapter wise and their summaries.
| |
| Args:
| |
| pdf_doc: A PDF document.
| |
| Returns:
| |
| collT, collS: collection of texts and theirs summaries
| |
| """
| |
| try:
| |
| textL = [x.page_content for x in docL]
| |
| except:
| |
| textL = [x.text for x in docL]
| |
| metaL = [x.metadata for x in docL]
| |
| idL = ["%06d" % x for x in range(len(textL))]
| |
| summL = create_summary(textL,llm)
| |
| sumL = []
| |
| for i,x in enumerate(summL):
| |
| sumL.append(Document(page_content=x,metadata=metaL[i]))
| |
| return sumL
| |
| | |
| def format_docL(docs):
| |
| """Formats the given documents into a list."""
| |
| return [doc for doc in docs]
| |
| | |
| def format_docs(docs):
| |
| return "\n\n".join(doc.page_content for doc in docs)
| |
| | |
| def get_vectorstore(collN,baseDir):
| |
| embeddings = get_embeddings()
| |
| # vectorstore = Chroma.from_documents(documents, openai)
| |
| client = chromadb.PersistentClient(path=baseDir + "/chroma")
| |
| db = Chroma(client=client,embedding_function=embeddings,collection_name=collN,collection_metadata={"hnsw:space":"cosine"})
| |
| #con = db.similarity_search_with_relevance_scores(q)
| |
| return db
| |
| | |
| def get_retrieval_qa(collN,baseDir):
| |
| db = c_t.get_vectorstore(collN,baseDir)
| |
| qa = RetrievalQA.from_chain_type(llm=OpenAI(temperature=0),chain_type="stuff",retriever=db.as_retriever(),return_source_documents=True,)
| |
| return qa
| |
| | |
| def get_chain_confidence(llm,collN,baseDir):
| |
| prompt = PromptTemplate(input_variables=["question","context"], template=c_p.promptConf)
| |
| db = get_vectorstore(collN,baseDir)
| |
| chain = ({'context': db.as_retriever(search_kwargs={'k':5}) | format_docs, "question": RunnablePassthrough()} | prompt | llm | c_p.parserS)
| |
| # chain = ({'context': db.as_retriever(search_kwargs={'k':3}) | format_docs, "question": RunnablePassthrough()} | prompt | llm)
| |
| return chain
| |
| | |
| def format_confidence(res):
| |
| try:
| |
| res['answer'] = bool(c_p.yesRe.match(res['answer']))
| |
| res['confidence'] = float(res['confidence'])
| |
| except:
| |
| pass
| |
| return res
| |
| | |
| def chain_inspect(model, retriever, question):
| |
| def inspect(state):
| |
| """Print the state passed between Runnables in a langchain and pass it on"""
| |
| print(state)
| |
| return state
| |
|
| |
| template = """Answer the question based only on the following context:
| |
| {context}
| |
| Question: {question}
| |
| """
| |
| prompt = ChatPromptTemplate.from_template(template)
| |
| chain = (
| |
| {"context": retriever, "question": RunnablePassthrough()}
| |
| | RunnableLambda(inspect) # Add the inspector here to print the intermediate results
| |
| | prompt
| |
| | model
| |
| | StrOutputParser()
| |
| )
| |
| resp = chain.invoke("what is a data process agreement?")
| |
| return resp
| |
| | |
| def create_conversational_rag_chain(model, retriever, get_history, agentDef=None):
| |
| """
| |
| Creates a conversational RAG chain. This is a question-answering (QA) system with the ability to consider historical context.
| |
| Parameters:
| |
| model: The model selected by the user.
| |
| retriever: The retriever to use for fetching relevant documents.
| |
| Returns:
| |
| RunnableWithMessageHistory: The conversational chain that generates the answer to the query.
| |
| """
| |
| contextualize_q_system_prompt = """Given a chat history and the latest user question \
| |
| which might reference context in the chat history, formulate a standalone question \
| |
| which can be understood without the chat history. Do NOT answer the question, \
| |
| just reformulate it if needed and otherwise return it as is."""
| |
| contextualize_q_prompt = ChatPromptTemplate.from_messages([("system", contextualize_q_system_prompt),MessagesPlaceholder("chat_history"),("human", "{input}"),])
| |
| history_aware_retriever = create_history_aware_retriever(model,retriever | format_docL, contextualize_q_prompt)
| |
| if agentDef == None:
| |
| agentDef = "You are an assistant for question-answering tasks. \n"
| |
| qa_system_prompt = (agentDef + "Use the following pieces of retrieved context to answer the question. "
| |
| "If you don't know the answer, say that you don't know. "
| |
| # "Use three sentences maximum and keep the answer concise."
| |
| "\n\n"
| |
| "{context}")
| |
| #prompt = ChatPromptTemplate.from_messages([("system", qa_system_prompt),("human", "{input}"),])
| |
| qa_prompt = ChatPromptTemplate.from_messages([("system",qa_system_prompt),MessagesPlaceholder("chat_history"),("human", "{input}"),])
| |
| question_answer_chain = create_stuff_documents_chain(model, qa_prompt)
| |
| # rag_chain = create_retrieval_chain(retriever, question_answer_chain)
| |
| rag_chain = create_retrieval_chain(history_aware_retriever, question_answer_chain)
| |
| conversational_rag_chain = RunnableWithMessageHistory(rag_chain,get_history,input_messages_key="input",history_messages_key="chat_history",output_messages_key="answer",)
| |
| return conversational_rag_chain
| |
| | |
| def create_qa_chain(model, retriever, agentDef=None):
| |
| """
| |
| Creates a question-answering (QA) chain for a chatbot without considering historical context.
| |
| Parameters:
| |
| model: The model selected by the user.
| |
| retriever: The retriever to use for fetching relevant documents.
| |
| Returns:
| |
| chain: it takes a user's query as input and produces a chatbot's response as output.
| |
| """
| |
| if agentDef == None:
| |
| agentDef = "You are an assistant for question-answering tasks. \n"
| |
| qa_system_prompt = agentDef + """Use the following pieces of retrieved context to answer the question. \
| |
| If you don't know the answer, just say that you don't know. \
| |
| {context}"""
| |
| qa_prompt_no_memory = ChatPromptTemplate.from_messages([("system", qa_system_prompt),("human", "{input}"),])
| |
| question_answer_chain = create_stuff_documents_chain(model, qa_prompt_no_memory)
| |
| chain = create_retrieval_chain(retriever, question_answer_chain)
| |
| return chain
| |