|
|
(11 intermediate revisions by the same user not shown) |
Line 1: |
Line 1: |
| import os, sys, json, re
| | Kotoba |
| import pandas as pd
| |
| import langchain as lc
| |
| import camelot
| |
| import pandasai
| |
| import markdown
| |
| from bs4 import BeautifulSoup
| |
| # import pdftotree $ with tensorflow
| |
| import kotoba.chatbot_utils as c_t
| |
| import importlib
| |
| from pandasai.llm import BedrockClaude
| |
| from pandasai.llm import LLM
| |
| from pandasai.prompts import BasePrompt
| |
| from langchain import PromptTemplate
| |
| from langchain.chains import LLMChain
| |
| | |
| modL = ["gpt-4o@openai","gpt-4-turbo@openai","gpt-3.5-turbo@openai","mixtral-8x7b-instruct-v0.1@aws-bedrock","llama-2-70b-chat@aws-bedrock","codellama-34b-instruct@together-ai","gemma-7b-it@fireworks-ai","claude-3-haiku@anthropic","claude-3-opus@anthropic","claude-3-sonnet@anthropic","mistral-7b-instruct-v0.1@fireworks-ai","mistral-7b-instruct-v0.2@fireworks-ai"]
| |
| os.environ['OPENAI_MODEL_NAME'] = modL[0]
| |
| system_message = "You are a Data Analyst and pandas expert. Your goal is to help people generate high quality and robust code."
| |
| model_params = {"do_sample": True,"top_p": 0.9,"top_k": 40,"temperature": 0.1,"max_new_tokens": 1024,"repetition_penalty": 1.03,"stop": ["</s>"]}
| |
| | |
| def html2df(fName,llm):
| |
| with open(fName) as fByte:
| |
| html_text = fByte.read()
| |
| soup = BeautifulSoup(html_text, 'html.parser')
| |
| tableL = soup.find_all('table')
| |
| tableS = "".join([str(t) for t in tableL])
| |
| tabDf = pd.read_html(tableS)
| |
| for tab in tableL:
| |
| t = str(tab)
| |
| if re.search("flexibility gradually",t):
| |
| tabD = pd.read_html(t, header=[0,1])[0]
| |
| break
| |
| | |
| agent = pandasai.Agent(tabD, config={"llm": llm})
| |
| df = pandasai.SmartDataframe(tabD, config={"llm": llm})
| |
| return df
| |
| | |
| def md2df(text,llm):
| |
| lines = text.split("\n")
| |
| header = lines[0].strip("|").split("|")
| |
| data = []
| |
| for line in lines[2:]:
| |
| if not line.strip():
| |
| break
| |
|
| |
| cols = line.strip("|").split("|")
| |
| row = dict(zip(header, cols))
| |
| data.append(row)
| |
| df = pd.DataFrame(data)
| |
| sdf = pandasai.SmartDataframe(df, config={"llm": llm})
| |
| return sdf
| |
| | |
| | |
| def get_local_llm():
| |
| from pandasai.llm import HuggingFaceTextGen
| |
| llm = HuggingFaceTextGen(inference_server_url="http://127.0.0.1:8080")
| |
| return llm
| |
|
| |
| def get_bedrock():
| |
| bedrock_runtime_client = boto3.client('bedrock-runtime')
| |
| llm = BedrockClaude(bedrock_runtime_client)
| |
| return llm
| |
| | |
| | |
| | |
| def numeric_qa(question,dataframe,model=llm,qa_prompt=numeric_qa_prompt,to_html=False):
| |
| """
| |
| A function that passes a prompt, question and table to the LLM.
| |
| There's an option of converting a data frame to HTML.
| |
| """
| |
| if to_html:
| |
| dataframe = dataframe.to_html()
| |
| prompt_qa = PromptTemplate(template=qa_prompt, input_variables=["text", "table"])
| |
| llm_chain = LLMChain(prompt=prompt_qa, llm=model)
| |
| llm_reply = llm_chain.predict(text = question, table = dataframe)
| |
| return print(llm_reply)
| |
| | |
| if False:
| |
| import seaborn as sns
| |
| iris = sns.load_dataset('iris')
| |
| iris.head()
| |
| agent = pandasai.Agent(iris, config={"llm": llm})
| |
| resp = agent.chat('Which is the most common specie?')
| |
| sales_by_country = pd.DataFrame({
| |
| "country": ["United States", "United Kingdom", "France", "Germany", "Italy", "Spain", "Canada", "Australia", "Japan", "China"],
| |
| "sales": [5000, 3200, 2900, 4100, 2300, 2100, 2500, 2600, 4500, 7000]
| |
| })
| |
| agent = pandasai.Agent(sales_by_country, config={"llm": llm})
| |
| resp = agent.chat('Which are the top 5 countries by sales?')
| |