(kotoba)
 
(Replaced content with "Kotoba")
Tag: Replaced
 
(12 intermediate revisions by the same user not shown)
Line 1: Line 1:
import os, sys, json, re
Kotoba
import pandas as pd
import numpy as np
os.environ['LAV_DIR'] = '/home/gmare/lav/'
dL = os.listdir(os.environ['LAV_DIR']+'/src/')
sys.path = list(set(sys.path + [os.environ['LAV_DIR']+'/src/'+x for x in dL]))
import kotoba.chatbot_utils as c_t
import kotoba.chatbot_unify as c_u
import kotoba.chatbot_prompt as c_p
import kotoba.pdf_tools as p_t
import kotoba.table_chat as t_c
import importlib
 
importlib.reload(c_t)
importlib.reload(c_p)
baseDir = os.environ['HOME'] + '/lav/soft/raw/'
pdf_doc = baseDir + 'Policies.pdf'
pdf_doc = baseDir + 'data_proc.pdf'
headers_split = [("####","Chapter"),("######","Section"),('########','Subsection')]
pdf_doc = baseDir + 'panasonic_airconditioner_manual.pdf'
headers_split = [('#',"Title"),("##","Chapter"),("####","Section"),("###","Subsection")]
pdf_doc = baseDir + 'leipzig/kompendium.pdf'
#pdf_doc = baseDir + 'BaroneLamberto2.pdf'
collN = re.sub(".pdf","",pdf_doc).split("/")[-1]
 
with open(baseDir + 'leipzig/kompendium.md','r') as f:
    md_text = f.read()
 
importlib.reload(p_t)
docL = p_t.split_text(md_text,headers_split)
print(len(docL))
 
text = docL[2].page_content
llm = c_t.get_llm_bedrock()
insD = t_c.md2df(text,llm)
respL = []
qL = ["Was ist versichert?","Was ist in compact Tariff versichert dass nicht in classic Tariff versichert ist?","Was ist in classic Tariff versichert dass nicht in compact Tariff versichert ist?"]
for q in qL:
    resp = insD.chat(q)
    respL.append({"question":q,"answer":resp})
   
 
   
 
if False: #caption images
    importlib.reload(c_t)
    docL = c_t.pdf2md(pdf_doc,headers_split)
    collT = c_t.create_collection(docL,collN,baseDir)
    vectT = c_t.faiss_vector_storage(docL,collN,baseDir)
    vectT = c_t.create_neo4j(docL,collN,baseDir,os.environ['NEO4J_PASS'])
   
if False: #caption images
    importlib.reload(c_t)
    fL = os.listdir(baseDir + collN)
    imgL = c_t.image_description(baseDir + collN,fL)
    collI = c_t.create_collection(imgL,collN + "_img",baseDir)
 
if False: # create summaries
    importlib.reload(c_t)
    llm = c_t.get_llm_bedrock()
    summL = c_t.section_summary(docL,llm)
    collS = c_t.create_collection(summL,collN + "_summary",baseDir)
    vectS = c_t.faiss_vector_storage(summL,collN + "_summary",baseDir)
   
if False:
    #docL = c_t.pdf_page([pdf_doc])
    #docL = c_t.pdf2tree(pdf_doc)
    docL = c_t.pdf2md(pdf_doc)
    collT, collS = c_t.create_collection_summary(docL,collN,baseDir,llm)
else:
    importlib.reload(c_t)
    c_t.list_collection(baseDir)
    collT = c_t.load_chroma(collN,baseDir)
    collS = c_t.load_chroma(collN + "_summary",baseDir)
    collI = c_t.load_chroma(collN + "_img",baseDir)
    vectT = c_t.get_vectorstore(collN,baseDir)
    retrT = c_t.get_chroma_retriever(collN,baseDir)
 
    q = "Where is the error code table"
    resL = vectT.similarity_search(query=q,k=5)
    print("\n".join([str(x.metadata) for x in resL]))
    resL = retrT.invoke(q)
    print("\n".join([str(x.metadata) for x in resL]))
 
 
 
   
    llm = c_t.get_llm_bedrock()
    res = c_t.search_neo4j(q,llm,collN,os.environ['NEO4J_PASS'])
 
 
 
   
    for doc in results:
        print(f"* {doc.page_content} [{doc.metadata}]")
   
    retriever = vectT.as_retriever(search_type="mmr", search_kwargs={"k": 1, "fetch_k": 5})
    #retriever.invoke("Error code 53", filter={"source": "news"})
    print(retriever.invoke("Error code 53"))
    # index = c_t.load_faiss(pdf_doc,baseDir)
    # query_engine = index.as_query_engine()
    # response = query_engine.query(q)
    # print(response.response)
    # n = response.source_nodes[0]
 
if False: #langchain
    importlib.reload(c_p)
    importlib.reload(c_t)
    llm = c_t.get_llm()
    chain = c_t.get_chain_confidence(llm,collN,baseDir)
    resL = []
    for i, aud in audD.iterrows():
        print("%0.2f" % (100.*i/audD.shape[0]),end="\r")
        q = aud['audit_question_en']
        if q == '' or q != q:
            continue
        try:
            ans = c_t.format_confidence(chain.invoke(q))
        except:
            continue
        res['question'] = q
        res['pred_answer'] = ans['answer']
        res['pred_justification'] = ans['confidence']
        res['pred_context'] = ''
        res["ref_justification"] = aud['exp_reference_en']
        res['ref_context'] = aud['Content of BAIT Chapter (all)']
        res['ref_answer'] = aud['exp_result']
        resL.append(res)
 
    evalDf = pd.DataFrame(resL)
    evalDf.to_csv(baseDir + "pred_" + modN + ".csv",index=False)
 
 
resp = requests.get('https://api.unify.ai/v0/models',headers={"Authorization":"Bearer " + os.environ['UNIFY_KEY']})
modL = resp.text
modL = ["gpt-4o@openai","gpt-3.5-turbo@openai","mixtral-8x7b-instruct-v0.1@aws-bedrock","claude-3-haiku@anthropic","claude-3-opus@anthropic","claude-3-sonnet@anthropic"]
#selL = collT.get(include=[],limit=5,offset=1)
db = c_t.get_vectorstore(collN,baseDir)
importlib.reload(c_u)
for j, m in enumerate(modL): # unify
    try:
        unify = c_u.get_unify(modL[j])
    except:
        continue
    modN = modL[j].split("@")[0]
    print(modN)
    resL = []
    for i, aud in audD.iterrows():
        print("%0.2f" % (100.*i/audD.shape[0]),end="\r")
        q = aud['audit_question_en']
        if q == '' or q != q:
            continue
        retL = db.similarity_search_with_relevance_scores(q)
        retS = "\n".join([x[0].metadata['s'] for x in retL])
        ansS = c_u.ask_rag(q,retS,unify)
        ansD = eval("{"+ans+"}")
        res = {}
        yes = False
        try:
            if re.search(c_u.yesRe,ansD['Answer'].split(",")[0]):
                yes = True
        except:
            if re.search(c_u.yesRe,ansS):
                yes = True
        res['pred_answer'] = yes
        res['pred_justification'] = ans
        res['pred_context'] = retS
        res['question'] = q
        res["ref_justification"] = aud['exp_reference_en']
        res['ref_context'] = aud['Content of BAIT Chapter (all)']
        res['ref_answer'] = aud['exp_result']
        resL.append(res)
 
    evalDf = pd.DataFrame(resL)
    evalDf.to_csv(baseDir + "pred_" + modN + ".csv",index=False)
 
       
 
print("te se qe te ve be te ne?")

Latest revision as of 12:11, 6 November 2024

Kotoba