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introduction

functionality and structure of lipid membranes

The functionality of cells and organelles is assured by the separation of the cytosol
from the extracellular liquid [Luckey (2008)]. The intracellular and extracellular liquids
differ in their DNA/RNA, protein and ion content. The lipid membrane is the envelope
that defines the boundary of the cell and prevents the mixing of liquid contents.
The exchange between the two liquids, like the transport of drugs and compounds, and

changes in membrane topology (for example fusion and fission), involve a reordering
of the lipids inside the membrane [Luckey (2008)]. The structure of the membrane
depends on its lipid composition, temperature and external pressure. In membranes
lipids are ordered into planar lamellar bilayers, they align parallel to each other and
the polar head groups face the solvent and shield the apolar tails from unfavorable
interactions with the solvent [Luckey (2008)].
The membrane hence consists of two coupled leaflets of lipids, with interesting me-

chanical properties [Helfrich (1985); Peliti and Leibler (1985); Discher et al. (1998);
Fygenson and Libchaber (1997)]. A lipid membrane is about 4 − 5[nm] thick and
extends in the lateral dimension over much larger orders of magnitude (10− 100[µm2]
in the case of giant unilamellar vesicles, GUV). On the macroscopic scale it can be
described as a continuum elastic sheet, where the shape fluctuation is controlled by
the bending and stretchability of the metric of a 2d surface [Seifert et al. (1991); Miao
et al. (1991, 1994)].
The elastic properties of the membrane and its transport properties (e.g. permeabil-

ity) is dictated by the lipid structure on the molecular scale.

collective processes in lipid membrane

The stabilisation of curved local structure and pores, the opening of membrane chan-
nels, the stages of membrane fusion such as the formation of a stalk (a lipid bridge
between two opposing membranes), and membrane fission are processes that require
local reordering of many lipids and are often driven by transmembrane or surface pro-
teins [Huang (1986b); Fattal and Ben-Shaul (1993); Helfrich and Jakobsson (1990a);
Partenskii and Jordan (2002); Nielsen et al. (1998); Marčelja (1976)]. These proteins
induce a local stress on the lipids around them and alter their equilibrium confor-
mation, driving the lipids to a new transient or stable conformation. Stalk and pore
formations are important steps for lowering the energetic barrier to membrane fusion
[Katsov et al. (2006); Schick et al. (2005); Risselada et al. (2012)]. The discovery and
classification of fusion pathways highlights important features of the cell cycle. Fusion
between cells is essential for synaptic transmission and viral infection, and the role of
proteins in this process is a matter of debate.

fusion processes

The fusion process between two bilayers is a complex change in the topological struc-
ture of the bilayers that requires intermediate steps. The fundamental steps are the
lipid mixing between the two membranes (stalk) and, possibly, the formation of a pore
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to allow the exchange between the internal and external liquids (see fig:1). There
exists many different possibilities about the sequence of these steps and the pathways
of the fusion process. One possibility considers the formation of the stalk as first, the
expansion of this stalk in a hemifusion diaphragm, and the formation of a fusion pore
in the hemi-fusion diaphragm [Jahn and Grubmüller (2002); Kozlovsky et al. (2004)].
An alternative pathway considers that after the formation of the stalk a pore is cre-
ated close to the ends of the stalk and the stalk elongates around the pore. When the
stalk has encircled the pore the fusion pore is created on the opposed bilayer [Katsov
et al. (2006); Schick et al. (2005); Müller et al. (2003)]. Alternatively the pore can be
originated first by peptides and lowers the energy barrier for the formation of a stalk.
At that point the stalk elongates around the pore and follows the terminal part of the
pathway described above [Risselada et al. (2012)]. These pathways are triggered by
the presence of proteins embedded in the membrane and local tensions. The fusion
objects (peptides, pores and stalks see fig:1) locally modify the membrane and interact
by a long range perturbation of the lipid conformations.

Figure 1: Cooperative behaviour between fusion objects. In the picture a pore is stabilized
by transmembrane peptides and interacts with a stalk via the deformation of the membrane
nearby. The bonds describing the peptides are colored in red and the violet surface
corresponds to the isosurface of the hydrophobic density.

Modifications between neighboring objects interact via changes of the lipid bilayers
whose effect is crucial in steering membrane fusion. Local modifications of membrane
structure cause packing frustration of the lipids that are constrained to sit parallel
to each other in the membrane. Short hydrophobic chains, like oil, embedded in the
membrane can relax the frustration of the lipid chains and partition where most of
this frustration is present.

solvent-free coarse-grained simulations

Fusion process pathways are far from the possibility of experimental observation due
to spatial and temporal resolution. The start of their evolution involves only a handful
of lipids over a time scale of about a nanosecond. The structural changes themselves,
however, can involve a large number of lipids and require the study of the evolution
of the system over many [µs].The span of time and length scales makes coarse-grained
models necessary and these models are well suited for fusion because there is universal
behaviour (i.e. system with different interactions exhibit similar collective behaviour).
Coarse-grained models are widely used in the physics of membranes [Venturoli et al.
(2006); Müller et al. (2006)] and the most relevant applications of those models are :



• mechanical properties of planar membrane: [Brandt et al. (2011); Waheed and
Edholm (2009); Shinoda and Okazi (1998); Neder et al. (2010); Zemel et al.
(2008); Gao et al. (2007); Loison et al. (2003)],

• lipid diffusion: [Javanainen et al. (2013); Apajalahti et al. (2010a); Klauda et al.
(2006); Cooke and Deserno (2005)],

• lipid-protein interactions: [May (2002); West et al. (2009); Branningan and
Brown (2007, 2006); Niemelä et al. (2010); Venturoli et al. (2005); Reister and
Seifert (2005); Sintes and Baumgärtner (1997); Schmidt et al. (2008); Fattal and
Ben-Shaul (1993); Marčelja (1976)],

• stalk formation: [Marrink and Mark (2003); Smirnova et al. (2010); Markvoort
and Marrink (2011); Müller et al. (2012)],

• pore formation: [Müller and Schick (1996); Wang and Frenkel (2005); Tolpekina
et al. (2004); Rzepiela et al. (2009)],

• membrane fusion: [Katsov et al. (2006); Schick et al. (2005); Müller et al. (2003);
Risselada and Grubmüller (2012); Shillcock and Lipowsky (2007); Grafmüller
et al. (2009); Risselada et al. (2012)],

• membrane fission: [Yang and Ma (2012)].

modeling

Among all the different models present in the literature, we choose to construct a soft,
solvent-free coarse-grained model that captures the essential properties of the mem-
brane shape evolution that involve a large number of lipids, around 10 000-100 000
chains. The essential property of lipids is their amphiphilic nature (polar head groups
and apolar tails), so we reduce the complexity of real lipids by dividing the chains into
polar and apolar blocks [Daoulas and Müller (2010); Hömberg and Müller (2010)]. The
removal of solvent particles from the simulation solves the problem of equilibrating big
structures under topology changes and reduces by a substantial fraction the number
of interactions to be calculated. The removal of solvent molecules is performed com-
prising their contribution by rescaling the interactions of the polar and apolar beads.
The rescaled interactions are derived from a density functional Hamiltonian that rep-
resents a third-order virial expansion in term of local densities. This expansion is the
lowest-order approximation for a phase separation between liquid and vapor phases,
and, by setting the virial coefficients properly, we can represent a hydrophobic chain-
melt in good or bad solvent conditions. More precisely, the virial coefficients set the
compressibility and the density of the melt and the incompatibility between the two
species. The interactions are coarse-grained in the sense that we lump the interac-
tion of many single atoms into one bead and we rescale the virial coefficients to be
invariant with respect to the discretization of the molecular contour. The interactions
are soft because there is no harsh excluded volume interactions. This is characteristic
for coarse-grained models where an effective interaction center represents a group of
atoms because the center of mass of these collection of atoms can overlap even if the
atoms cannot. All the forces in the system (conservative, dissipative and random) are
smoothed by weighting functions to improve their integrability (improved numerical
stability and larger time steps) and the energy sampling (narrower distribution of the
interaction values) [Groot and Warren (1998); Trominov et al. (2002)]. The sampling
of energetic contributions via thermodynamic fluctuations allows exploration of the
configuration space to be achieved in a limited amount of time, avoiding the use of
more advanced techniques (e.g. umbrella sampling) [Plischke and Bergensen (1994)].



structure of the thesis

This work is divided into seven chapters. The first two chapters are dedicated to
the presentation of our model and simulation techniques. In the third chapter the
calculation of the chemical potential of a hydrophobic inclusion inside the membrane
is presented. In the fourth chapter, the mechanical properties of bilayer membranes are
analyzed, for the parametrization of the continuum model, and to obtain important
reference values. In the fifth chapter are discussed the static and dynamic properties
of stalks. The sixth chapter studies the local modifications around a transmembrane
protein and the predictions of the continuum model. In the last chapter we show how
the line tension of pore changes in the presence of defectants and how oil partitions
around fusion objects.

[c III] inclusion stability

In the third chapter, we model a hydrophobic inclusion as a spherical Lennard-Jones
potential and explore the parameter space (the inclusion radius and surface energy)
to isolate the parameters that assure stability inside the membrane. The presence of
the inclusion modifies the surrounding membrane, and the embedding of the inclusion
may not be energetically favourable, resulting in ejection of the nanoparticle and some
coating lipids from the membrane. Therefore we calculate the chemical potential
of the inclusion inside the membrane to compare it with the chemical potential of
a nanoparticle with a lipid coating using thermodynamic integration in the grand
canonical ensemble.

[c IV] planar lamellar membranes

Once we have set up the simulations, we study the influence of our model’s param-
eters on the macroscopic quantities of the self-assembled structures. The search of
the parameter range for fluid planar membranes proceeds in the following systematic
order. First we study the influence of chain architecture on the self-assembled phases
and identify the lipid architectures that self-assemble into inverted micelle, inverted
hexagonal, rhomboidal and lamellar phase. Among the lipids corresponding to the
lamellar phase, we study succesively the influence of model’s parameters on the bend-
ing rigidity and area compressibility, and isolate the range where the membrane is in
a stable fluid phase. The incompressibility parameter also controls the diffusivity of
lipids and we calculate the different diffusion constants for different phases. For a fixed
compressibility we use the hydrophobic thickness to set the length scale of the model.

[c V] stalk morphology and evolution

In this chapter we analyse the mechanical and dynamic properties of a stalk. The
stalk is a lipid bridge between two opposed membranes, which has a similar shapes
but different activation barrier depending on the lipid composition. We identify two
lipids architectures that we call PE-like and PC-like lipids. The first architecture gives
rise to linearly elongated stalks, the second forms circular ones. We develop a method
to reconstruct the linear and the circular shape of the stalk, and we trace its position
and shape deformation. We quantify how the contribution of the lateral tension and
dehydration influences bilayer repulsion. Finally, we compare the shape of the stalk
with different models and experiments and point out universal behaviours.

[c VI] thickness profile around transmembrane proteins

After having studied the bulk properties of planar membranes, we investigate how a
transmembrane cylindrical hydrophobic inclusion (i.e. a coarse-grained representation
of a protein) modifies the surrounding membrane. The local modification of the lipids



around the protein can cause the stabilisation of a pore, the addition of local stress,
and the lowering of the activation energy for the formation of a stalk. Starting works
studying on lipid modification around a single protein in coarse-grained models [Ven-
turoli et al. (2006)], we want to extend this research to the effect of a cluster of proteins.
We also test the ability of the continuum model to predict the behaviour observed in
our simulations. The continuum model allows for a finer exploration of the parameter
space (interficial energy, hydrophobic mismatch and radius of the single protein). We
study the superposition of membrane deformation for a cluster of proteins and we find
the minimal configuration for the stabilisation of a toroidal pore.

[c VII] line tension of pores in the presence of defectants

The presence of one protein lowers the energy barrier to formation of a pore, and we
quantify this effect by calculating the line tension of the pore with and without external
peptides. If we add short hydrophobic chains (oil) inside the bilayer, we observe an
increase in the line tension of the pore and the mean separation between the pore and
the protein. To study the effect of the oil, we calculate the partitioning of oil between
the protein and the pore. More detailed information about the stress release due to
oil is done by calculating the stress profile around the inclusion and the pore. The
presence of oil modifies the thickness profile around the two objects and we calculate
the pore peptide distance with and without oil.
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Chapter 1

model

1.1 efficient modelling of collective phenomena

In this chapter we develop a minimalistic model to study collective phenomena of
many lipids in bilayer membranes. The model we use includes an implicit solvent
and reduces the complexity of the molecular architecture of lipids into diblock chains,
where the atomistic description is substituted with a polar/apolar duality. We use
soft and coarse-grained interactions where each of the beads represents a collection of
atoms and interacts with its neighbours by effective, mesoscopic interactions. These
interactions should take into account the effect of the missing water molecule and
represent the phase separation between a melt of apolar chains and the polar solvent.
The coarse-graining procedure and the lack of solvent requires the addition of a ther-

mostat. To accurately calculate membrane fluctuations and large scale phenomena
involving ten thousands of chains, we have to assure correct conservation of the mo-
mentum. The dissipative particle dynamics thermostat (DPD) [Pagonabarraga and
Frenkel (2001); Espanol and Warren (1995); Groot and Warren (1998)] improves the
Langevin thermostat in the sense that it conserves locally momentum, which is essen-
tial for large scale hydrodynamics. Another important feature of the thermostat is the
softness of the forces, which facilitates stable integration of the equation of motion.
The integration of the equation of motion is done with the velocity Verlet algorithm.
Once the simulation program was written, we explored its parameter space for the
self-assembly of lipids into planar fluid membranes. After the formation of a stable bi-
layer, we introduce a description of a protein or a nanoparticle that interacts with both
types of beads. It is repulsive towards the hydrophilic beads and attractive towards
the hydrophobic ones, save for hard core repulsion.
The properties of the simulation scheme are briefly introduced in the following sec-

tions.

1.2 solvent-free model

equation of state

An equation of state can be formulated as a virial expansion in powers of density where
every virial coefficient represents a n-body interaction [Hömberg and Müller (2010)].

P = kBT
∑
n=1

cnρ
n (1.1)

The first order term, c1 = 1 represents an ideal gas where no interaction occurs between
the particles. Further terms are required when pairwise interactions, c2 6= 0, or multi-
body interactions, cn>2 6= 0, occur. Homopolymer chains in a polar solvent aggregate
with each other and form a melt that minimizes the unfavourable contact with the
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solvent-free model CHAPTER 1. MODEL

solvent. The system is nearly incompressible and the melt density fluctuates around the
coexistence value where the liquid phase coexists with the vapor phase with negligible
density (i.e. the solvent free model). Since we have removed the solvent, the pressure
of the whole system is zero as the polymer melt coexists with a vapour of vanishingly
low density (basically vacuum) and, at equilibrium, the pressure normal to the bilayer
must be the same at every point in the space.
The equation of state, P (ρ), that describes the coexistence of the homopolymer melt

in a fluid phase with its vapor is at the lowest-order a third degree polynomial, i.e.
the lowest order curve that crosses the point (0, 0) and (0, ρcoex). For densities close
to the density coexistence (miscibility gap), phase separation occurs and the system is
spatially inhomogeneous.

Figure 1.1: Mean-field
Equation of state of the
liquid-vapour interface. The
curve represent the third-order
polynomial expansion of the
equation of state, the tangent
shows the derivative of the
equation of state with respect
to the density, i.e. the
reciprocal of the
compressibility of the system

In the graph, (see fig:1.1), we show the line represented by the equation

P

kBT
= ρ+ c2ρ

2 + c3ρ
3 (1.2)

where the coexistence density is at the point where the line crosses the abscissa and
can refer to the density of hydrophobic beads, ρA, or the density of chains ρc.ρA density of the hydrophobic

beads, ρc = ρA/Nb density of
chains.

The
slope of the derivative of the equation of state at the coexistence density shown in
the graph marks the inverse of the compressibility of the system. The coexistence
density of the hydrophobic melt and the thickness of the bilayer membrane in the
tensionless state dictate the areal density of amphiphiles in a bilayer membrane. This
is a key characteristics of the membrane and values for different system are available
in the literature [Bermudez et al. (2002)],[Bermudez et al. (2004)] with values around
ρcoex = 10− 100[R−3

e ] in units of Re, the end-to-end distance of the chain.

implicit solvent

The number of molecules of the surrounding solvent is much greater than the number
of lipids and if it were included explicitly, it would demand most of the computational
time during a simulation. Most of these molecules do not interact directly with the
membrane. A common practice to reduce the calculation time is to integrate out
the solvent degrees of freedom. The interactions between the monomers are hence
described by an effective Hamiltonian. This approach sums over all the interactions
between the particles to build a potential whose derivative furnishes an average force
that, statistically, represents the hidden interaction with the “ghost” solvent molecules.
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solvent-free model CHAPTER 1. MODEL

The effective Hamiltonian of the system is described as a functional of the density.
The functional of the density can be calculated assigning a value of the density on
a three dimensional lattice [Daoulas and Müller (2012)] while to set a particle-based
simulation (and retain translational invariance) we express the densities in terms of
local densities around each particle [Hömberg and Müller (2010)].
We can obtain the equation of state as previously defined by writing the Hamiltonian

as an expansion up to the third order in density. The functional formulation of this
potential is

Hnb[ρ]
kBT

=
∑

α,β,γ∈{A,B}

∫
d3r

R3
e

(
v2
αβ

2
ραρβ +

v3
αβγ

3
ραρβργ

)
(1.3)

where the Greek indices specify the type of the species. We can see how this Hamil-
tonian leads us to the same equation of state. In the next sections we are going to
show that the Hamiltonian of (eq:1.3) can be written as pairwise potential (eq:1.43)
and hence the total potential and force of the system are:

Hnb[ρ] =
∑
i,j<i

Hnb(rij) F tot =
∑
i,j<i

F ij = −
∑
i,j<i

∇rijHnb(rij) (1.4)

The pressure is given by the partial derivative of the free energy with respect to the
volume.

P = − ∂

∂V
F = kBT

∂

∂V
lnZ Z =

∫
drNe−βHnb(r

N ) (1.5)

Since the potential does not depend on direction, we perform the following substitution

r = V 1/3r′ (1.6)

The scaled positions r′ have the property that the scaled coordinates of all particles
remain fixed even if we expand or contract the system. If we consider only one species
α = β = γ = A substituting, we obtain v2 = vAA, v3 = vAAA.

P = kBT∂V ln
(
V N

∫
dr′

N
e−βHnb(V

N/3r′N )

)
= kBTρ−

〈
∂VHnb(V N/3r′

N )
〉

(1.7)

We can hence rewrite the last term of the previous equation as: rij = V 1/3r′ij , ∂V = 3V
rij
∂rij .

〈
∂VHnb

(
V N/3r′

N
)〉

=
1

3V

〈∑
i,j<i

rij∇rijHnb(rij)

〉
= − 1

3V

〈∑
i,j<i

rijF ij

〉
=: −W

V
(1.8)

where we have introduce the virial W . In the previous calculation we exploit the equiv-
alence of ensembles since thermodynamics properties can be calculated as averages in
any convenient ensemble [Allen and Tildesley (1991)]. Substituting the Hamiltonian
(1.3) the virial is:

−W =
〈
∂VHnb(V N/3r′

N )
〉

= V kBT

〈
∂V

∫
d3r

R3
e

(v2

2
ρ2
A +

v3

3
ρ3
A

)〉
= V kBT

(
v2

2
ρ2
A +

2v3

3
ρ3
A

)
(1.9)

yielding a third-order equation of state in mean field approximation.
A molecular dynamics simulation integrates the equations of motion of a system

of particles. We must hence provide a description of forces acting between a certain
number of particles. The density functional formulation of the interaction Hamiltonian
in (1.3) in terms of the local density, ρ, provides a definition of the forces that act

9
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between the particles. In our model, an amphiphilic chain is described by a bead-
spring model with two different types of beads that we mark A, for a hydrophobic
bead, and B for a hydrophilic one. Neighboring beads along the backbone of the
chain molecule are connected by harmonic springs. In our model the conservative
interactions, F c, are the sum of bonded, b, and non-bonded, nb, forces.

F c = F nb + F b (1.10)

discretisation

The Hamiltonian of the system is invariant with respect to changing of the discretisa-
tion (number of beads per chain, Nb). This means that we have to rescale the virial
coefficients with respect to the length scale, Re, and to the discretisation, N , used.
The length scale, Re, denotes the mean-square end-to-end distance of the lipid. For

a freely-jointed model one obtains:〈
R2
e

〉
=
∑
ij

〈rirj〉 = l2
∑
ij

〈cos θij〉 = l2
∑
ij

δij = l2Nb (1.11)

using 〈cos θi 6=j〉 = 0. l is the statistical length. Its value depends on the chemical
structure of the monomers and it is known and tabulated for a variety of different
polymer materials [Mark (2007)]. The volume and the density of the system are
rescaled in units of the end-to-end distance, Re, and the number of beads per chain,
Nb.

V 7→ V

Re
3 ρ 7→ ρ

Re
3

Nb
(1.12)

This implies that the virial coefficients depend on the end-to-end distance and on the
discretisation to preserve the invariance of the Hamiltonian.

Hnb[ρ]
kBT

=
∫

d3r

Re
3

(
v′2
2
ρ′

2 +
v′3
3
ρ′

3
)

= (1.13)

=
∫

d3r

(
v′2R

3
e

2Nb
ρ′

2
N2
b

R6
e

+
v′3R

6
e

3
ρ′

3
N3
b

R9
e

)
=
∫

d3r
(v2

2
ρ2 +

v3

3
ρ3
)

i.e. the virial coefficients and the density scale with the following relations

ρ 7→ ρR3
e

Nb
vαβ 7→

vαβN
2
b

R3
e

vαβγ 7→
vαβγN

3
b

R6
e

(1.14)

Also the bonded interactions depend on the discretisation. For computational sim-
plicity, we do not utilise a freely jointed chain model with a fixed bond length but
successive monomers are bonded by a harmonic potential. This is the minimal model
that gives rise to Gaussian statistics of the chain conformations. The bonded interac-
tions are given by a discredited Edwards-Hamiltonian:bi bond vector, bi = ri − ri+1,

ksp :=
3(Nb−1)

R2
e

.

Hsp
b (bi) =

Nb−1∑
i=1

ksp
2

(ri − ri+1)2 (1.15)

Since the lipid chains are less flexible than long polymers and exhibit fewer conforma-
tional fluctuations, we induce a stiffness potential between neighbouring beadsθi angle between two segments,

θi := acos
−bibi+1
bibi+1

Hb
b (θi) = kb

Nb−1∑
i=2

(1− cos θi) (1.16)

10
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virial coefficients

The Hamiltonian of non-bonded interaction considers interactions between beads of
the same species, A−A, B−B, and cross interactions A−B. We must hence estimate
seven virial coefficient: vAA, vAB , vBB , vAAA, vBBB , wABB and wAAB . The virial
coefficients characterise the different interactions between the species of beads and
parametrise the equation of state. The hydrophilic head groups are in good solvent
condition. A polymer in good solvent condition can be represented by a chain in
which only the two-body interactions are relevant and hence, vBB > 0 and vBBB = 0,
[Fredrickson et al. (2002)]. For the hydrophobic tails higher orders are to be take
into account. We consider a polymer melt composed by hydrophobic chains. The
first coefficient represent the ideal gas and is equal to one, vA = 1. An equation of
state up to the third order, which is capable of describing the coexistence between a
dense hydrophobic melt and its vapor, requires that the second-order term is negative,
vAA < 0, and the third is positive, vAAA > 0. The second- and third-order coefficients
can be determined from the following reasoning. A first equation is provided by the
fact that in an implicit solvent the external pressure at the coexistence approximately
vanishes and the melt in equilibrium has the same pressure

P ' 0 ' ρcoex +
vAA

2
ρ2
coex +

2vAAA
3

ρ3
coex (1.17)

A second equation is obtained from the isothermal compressibility defined by

β

kT
= −V β

(
∂P

∂V

)
T

= ρc∂ρc

(
ρc +

vAA
2
ρ2
c +

2vAAA
3

ρ3
c

)
= ρc + vAAρ

2
c + 2vAAAρ3

c

(1.18)
We define the dimensionless inverse compressibility, kNb: ρc = Nc

V
, ρ = N

V
, ρA = NA

V

kNb := β
∂W

∂ρc
= β

∂W

∂ρ
Nb

1
kT

= ρckBT + ρckBTkNb (1.19)

For a homopolymer melt, the thermal compressibility is given by:

β

kT
= ρ∂ρP = ρ∂ρ(ρ+ 〈∂ρH[ρ]〉) = ρkBT (1 + ∂ρW ) (1.20)

where we recall the definition of the virial in eq. 1.8. The thermal compressibility is
also defined in terms of the Edwards correlation length, ξ [Wu et al. (1995)] β is the inverse temperature,

β = (kBT )−1

β

kT
=

ρ

12(ξ/Re)2
(1.21)

The characteristic length of density fluctuations in the solution is the Edwards corre-
lation length which is connected to the statistical segment length of an ideal chain, b,
and the excluded volume, v, (positive in good-solvent conditions) [Meyer et al. (2008)].

ξ =
b

(12ρv)1/2
(1.22)

The mixed terms can be calculated using the theory of miscibility between two differ-
ent species. Entropy favours the miscibility of the two components, but the system’s
repulsive forces tend to separate them. The Flory interaction parameter, χ, charac-
terises the difference of interaction energies in the mixture. The theory considers a
blend of two different components, the component A and the component B which are
chemically different. Component A occupies the volume VA and φA is the volume frac-
tion of the A species, φA := VA/Vtot. The free energy of mixing, ∆Fm, is the change in
energy when two different chemical substances are mixed. The free energy of mixing
for pure components, considered separated, is the sum of an entropic, ∆S, and an

11
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enthalpic term, ∆E. If the volume is totally occupied by the two species φa = φ and
φb = 1− φ

∆Fm
kBT

= ∆Em − T∆S =
φ

NA
lnφA +

(1− φ)
NB

lnφB + φ(1− φ)χ (1.23)

The Flory-Huggins equation, on the right hand side, is the sum of combinatorial
and interaction terms. Following [Müller (1999); Flory (1941)] we can define the χ
parameter by calculating the difference of the chemical potential per monomer between
the two species. Neglecting fluctuations we can define χ as:

χ = ρ

∫
d3r

(
gAB(r)UAB(r)− gAA(r)UAA(r) + gBBUBB(r)

2

)
(1.24)

where gαβ , with α, β ∈ {A,B}, is the pair correlation function between the monomers
of the species α with monomers of species β, and Uαβ is the pair-wise potential energy
between the two species. In a mean-field approximation, the pair correlation function is
g(r) = 1 and the integration of the potential yields the second-order virial coefficients.

χ ' ρ

kBT

∫
d3r

(
UAB(r)− 1

2
(
UAA(r) + UBB(r)

))
=

= ρ

(
vAB −

1
2
(
vAA + vBB

))
(1.25)

In Helfand’s model, [Helfand and Tagami (1971)], the previous theory is extended for
a nearly incompressible system φA + φb / 1

HI

kBT
= ρ

∫
d3r

(
χφA(r)φB(r) +

kmelt
2

(φA(r) + φB(r)− 1)2

)
(1.26)

where the kmelt parameter expresses the tendency of the system to pull the polymers
into regions where the total density is ρA + ρB = ρ0.
The density of the system, ρ0, depends on the number of beads per chain, Nb. If

we change the discretisation, the number density of beads in the system will change.
Since ρ0kmelt and ρ0χ are invariant, if we use units of the chain density ρc = ρ0/Nb,
kNb and χNb are invariant. Combining (1.17), (1.18) and (1.25) we obtain the virial
coefficients

vAA = −2
kNb + 3
ρ0

vAAA =
3
2
kNb + 2
ρ2

0

vAB =
χNb
ρ0

+
1
2

(vAA + vBB) (1.27)

The evaluation of the other parameters is empirical. The remaining two third-order
mixed terms vABB , vAAB , should be positive and for simplicity we set them to the vAAA
term: vAAA = vAAB = vABB . The hydrophilic beads are in good solvent conditions,
i.e. there is no fluid/vapor phase separation. We hence set vBBB = 0 and −0.5 <
vBB < 0.1. The vBB virial coefficient comprises as well the interactions with the
missing water molecules and therefore we allow a small attraction between head groups
(negative values per vBB) to reproduce different hydration of the lipid head groups. For
negative values of the coefficient vBB the head groups are slightly attractive between
each other but do not show any cluster formation at the low hydrophilic densities of
the usual simulated systems.

1.3 dissipative particle dynamics

To simulate the dynamics of polymers or lipids in the membrane we use the DPD
(Dissipative Particle Dynamics)DPD Dissipative Particle

Dynamics
simulation method. The original work from [Koeleman

12
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and Hoogerbrugge (1993)] was successive upgraded by [Pagonabarraga and Frenkel
(2001)] into a MDPD (Multi body Dissipative Particle Dynamics) scheme, MDPD Multi-body Dissipative

Particle Dynamics
which we

explain below.
DPD is a method to integrate the equations of motion, like molecular dynamics sim-

ulations but its range of validity is the mesoscopic scale and therefore requires Brown-
ian noise which includes hidden interactions with the “ghost” microscopic particle. In
contrast to a Langevin description, DPD uses noise and friction that locally conserve
angular and linear momentum. Conservation of the hydrodynamics is important in
annealing defects [Gonnella et al. (1997)]. For the DPD thermostat, the equation of
motion is the sum of conservative (c), dissipative (d) and random (r) forces F c conservative

F d dissipative
F r randommv̇ = F c + F d + F r (1.28)

Every component is limited to a distance interval, ∆L, by a weighting function w(rij)
that depends on the relative distance between the particles. This function is 1 for
r = 0 and goes to zero at the cut-off distance r = ∆L. Every force is pair-wise and
thus locally conserves momentum. w(rij)f ij strength of the force

acting between the i and j
particle, rij distance between the
i and j particle.mv̇ = wc(rij)f cij + wd(rij)fdij + wr(rij)frij (1.29)

The weighting function makes the forces soft and permits increase of the time-step of
the simulated system [Pastorino et al. (2007)].
The conservative force depends on the particular system and it is obtained from

the derivative of the potential. The dissipative and random forces should obey the
fluctuation-dissipation theorem. If we determine a dissipative term γ we have to define
the strength, ξ. As shown in [Orlandini (2008)], if we choose an uncorrelated Gaussian
random noise with zero average〈

θgij(t)
〉

= 0
〈
θgij(t)θ

g
kl(t
′)
〉

= (δikδjl + δilδjk)δ(t− t′) (1.30)

the strength terms should satisfy the relation

ξ =

√
2
γkBT

m∆t
(1.31)

In practise, following [Dünweg and Paul (1991)], we can use a uniform random number
generator, θuij , which is faster to compute, instead of a Gaussian. In this case we note
that if a Gaussian distribution has a variance of σ, a uniform distribution equal to 1
between [−σ/2, σ/2] has a variance σ/

√
12. Hence, our equation of motion takes the

form

mv̇ = f cijw
c(rij)− γwd(rij)(vij r̂ij)r̂ +

√
24γkBT
m∆t

θuijw
r(rij) (1.32)

In Groot and Warren’s work [Groot and Warren (1998)] the DPD simulation method
is widely investigated and following their results, we set γ = 0.1 and ∆t = 0.01 in the
system’s units: kBT = ∆L = m = 1. On the suggestion of the same work we use the
velocity Verlet integration scheme instead of the Euler’s. Español and Warren (1995)
[Espanol and Warren (1995)] have shown that the dissipative weighting function can be
chosen arbitrarily and is connected to the random weighting function by the relation
wd(r) = (wr(r))2. In [Pastorino et al. (2007)] different weighting functions in different
polymer system are tested. The particular choice of a weighting function concerns
the thermostat of the system and the computational efficiency. We define the number
of particles thermostated, i.e. the particles included in the sphere within the cut-off
multiplied by the weighting function, as

NTP = ρ0

∫ r

0

wr(r)g(r)4πr2dr (1.33)

13
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where the g(r) in the pair correlation function that in our case we approximate as 1.
The use of the following weighting function

wd(r) = (wr(r))2 =
(

1− r

∆L

)2

if r < ∆L (1.34)

provides a fast computing efficiency. In agreement with the suggestions of [Hömberg
and Müller (2010)] and [Trominov et al. (2002)], we observe in our simulations that
if the cut-off distance include an average number of thermostated particle larger than
3-4 the system conserves temperature keeping a time step of ∆t = 0.01.
The integration of the equations of motion is performed via a velocity Verlet algorithm

which is composed of two steps

ri(∆t) = ri(0) + ∆tṙi(0) +
∆t2

2mi
F i(0) ṙi(∆t/2) = ṙi(0) +

∆t
2mi

F i(0)

and secondly

ṙi(∆t) = ṙi(∆t/2) +
∆t
2mi

F i(∆t) (1.35)

and its derivation is briefly discussed in the appendix.

multibody dissipative particle dynamics

As was noted in [Trominov et al. (2002)], the DPD model, as it was initially formulated,
does not take into account the local density of the system. If the conservative forces
depend only on the mutual distance between the particles, then the system produces
an equation of state of up to second order [Groot and Warren (1998)]. This means that
we can not simultaneously map the pressure and the compressibility of the system,
because the inverse of compressibility is limited by the value of the pressure

k−1
T = ρkBT + vAAρ

2 = 2P − ρkBT < 2P P = ρkBT +
vAA

2
ρ2 (1.36)

which is not the case for more compressible liquids. [Pagonabarraga and Frenkel
(2001)] proposed to redefine the conservative forces dependent upon the local density
of the system. This suggests defining the free energy as a functional of the density and
to proceed with the calculation of the conservative forces by deriving the free energy
with respect to the spatial coordinates.

conservative force

The non-bonded interactions between the beads should come from the negative deriva-
tive of the potential.

F αβ(ri, rj) = −∇rU(rα, rβ) (1.37)

where the Greek indices refer to the different types of beads, A,B. The forces depend
on the type of beads involved and on their mutual distances. It is now important to
show how we obtain a pairwise interaction, which is required by the DPD simulation
scheme. The Hamiltonian we use for a one component system is, v2 := vAA, v3 := vAAA

v2 := vAA
v3 := vAAA Hnb[ρ]

kBT
=
∫

d3r
(v2

2
ρ2(r) +

v3

3
ρ3(r)

)
(1.38)

If we consider our particles to be points, we write the density as a sum of delta functions

ρ(r) =
∑
i

δ(r − ri) (1.39)
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Since the product of delta functions is not defined, we rewrite the product of density
functions as a delta times a weighting function w(r)

ρ2(r) :=
∑
ij

δ(ri − r)w(|r − rj |) (1.40)

ρ3(r) =:
∑
ijk

δ(ri − r)w(|r − rj)w(|r − rk|) (1.41)

This weighting function should be normalised by

4π
∫ ∆L

0

dr r2w(r) = 1 (1.42)

which helps us formulate the Hamiltonian as a sum over all the positions of the parti-
cles, rij := |ri − rj | rij = |ri − rj |∑
i,j<i

Hnb(rij)
kBT

=
∫

d3r
∑
ij

δ(r − ri)

(
v2

2
w(|r − rj |) +

v3

3
w(|r − rj |)

∑
k

w(|r − rk|)

)

=
∑
i,j<i

(
v2

2
w(rij) +

v3

3
w(rij)

∑
k

w(rik)

)
(1.43)

The weighting function, w(r), represents the smoothing operation, which implies that
we cannot resolve the system below a certain length scale ∆L. We finally obtain the
conservative force by deriving the potential with respect to the coordinate ri

F nb
i := −∂ri

∑
j

Hnb(rij)

= −kBT
∑
j

(
v2

2
∂riw(rij) +

v3

3
(∂riw(rij))

∑
k

w(rik) +
v3

3
w(rij)∂ri

∑
k

w(rik)

)

= −kBT
∑
j

((
v2

2
+

2
3
v3

∑
k

w(rik)

)
w′(rij)

rij
|rij |

)
=

∑
j

F ij (1.44)

Where we have used∑
j

[
∂ri

∑
k

w(rik)

]
w(rij) =

∑
j

∑
k

[∂iw(rik)]w(rij) =
∑
j

[∂iw(rij)]
∑
k

w(rik)

In this way we obtain a pairwise expression for computing the conservative force, as
required by the MDPD simulation method.

1.4 homopolymer melt

As we have seen in the previous calculation, the weighting function should be dif-
ferentiable, without singularities and fast to compute. From (1.44) we can see that
the definition of the weighting function changes the interactions. The definition of
the weighting function is connected to the pair-correlation function and the effective
potential. This relation applies only to low densities as a consequence of assumption
required in the virial expansion.
The Boltzmann factor between two particles is exp(−βU(rij)), which reduces to 1

if the particles do not interact. The difference between the Boltzmann factor of the
interacting and non interacting particles is defined as the Mayer function.

f(r) := e−βU(r) − 1 (1.45)
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It is a positive function for an attractive potential (U(r) negative), negative for a
repulsive potential and zero for no interaction. The negative integral of the Mayer
function gives the excluded volume.

Vex :=
∫

d3r
(

1− e−βU(r)
)

(1.46)

setting the weighting function

The weighting function is a key feature of the DPD thermostat and softens the con-
servative, dissipative and random forces, improving the integrability of the equation
of motion. These functions are null at the cut-off distance, ∆L, positive (grow contin-
uously towards zero distances) and their first derivative must be continuous.

Figure 1.2: The change of the
a parameter in the weighting
function, from a = 0.9 to a
a = 0.5, decreases density
oscillations in the profile of the
liquid-vapour interface between
a melt and vacuum.

The weighting function changes the interactions and the choice of a particular weight-
ing function can change the properties of the system, especially at the interfaces where
the packing effect of the beads is most visible. The choice of the weighting function
is constrained by computational efficiency. The fastest curves to compute that are
constant within [0, a] and are equal to zero at the cut-off distance, ∆L, with no sin-
gularities in their derivative are the splines. The setting of the order of the spline and
the limit of the a value should represent the expected interaction.
We show as an example how the difference in the parameter of the weighting functions,

[Hömberg and Müller (2010)] (see eq:1.48), changes the density profile at the liquid
vapour interface (see fig: 1.2).

w(r) =

{
2r3−3(a+1)x2+6ax−3a2+1

(1−a)3 if a < r < 1
0 if 1 < r < a

(1.47)

The changing of the density profile with respect to the a parameter can be explained
in a heuristic way. If the a parameter is large, the beads resemble hard spheres.
The narrow liquid-vapour interface acts like a hard wall and gives rise to pronounced
packing. If we make the hard core of the spheres more soft, decreasing a, the beads
represent a soft volume rather than a hard sphere, and packing is no longer observed.
In (see fig: 1.2), we observe that large values of a, such as a = 0.9, show strong

packing effect.
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To simulate a more realistic model of lipid membranes a distinction between the
second- and third-order weighting function was introduced to reproduce fluid/gel phase
transition [Hömberg and Müller (2010)]. The second-order interaction are attractive
and we choose for the second-order weighting function w2(r) the function: A =

−15
2π(2a6−3a5∆L+3a∆L5−2∆L6)

,

a = 0.9.

w2(r) = A


(∆L)3 if 0 ≤ r < a

2r3−3(a+1)x2+6ax−3a2+1
(1−a)3 if a < r < ∆L

0 if r > ∆L
(1.48)

The third-order interaction are repulsive and we define the third-order weighting func-
tion, w3(r), as:

w3(r) =
15
2π

{
(∆L− r)2 if r ≤ ∆L

0 if r ≥ ∆L (1.49)

1.5 bilayer membranes

After having set the model and the simulation program and checked the properties of
a homopolymer melt we start to form the amphiphilic polymers and lipids to create
planar bilayer or vesicles. The mechanical properties and phase behaviour of those
membranes strongly depend by the parameters of the model and on the chain archi-
tecture. In the following chapter we will extensively show how the material properties
of the membrane are influenced by the model’s parameters.

notation

In the following chapter we use the reduced units: kBT = 1/β = 1. For every value
the error influences the last digit shown. If the calculation of a quantity, v, is the result
of an interpolation and the interpolation is strongly subjected to the interval range,
the range of the obtained values is written with this notation: v1 − v2 where v1 < v2.
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Chapter 2

setting
the Monte Carlo simulations

2.1 lipid reservoir

In most of the experimental conditions the size of the membrane is much larger than
the portion studied by computer simulations. This means that a large amount of lipids
is available to flow inside and outside the region of interest. The flow of lipids can be
viewed as an exchange of the lipids of the system with a lipid reservoir. To extend
the molecular dynamics simulations to the grand canonical ensemble we write a Monte
Carlo code using the same model introduced in the previous chapter.
In the grand canonical ensemble the number of chains fluctuates. To vary the number

of chains in the system we have to find a criterion to remove and insert the chains
from and into the system. In the present chapter we introduce a modified Metropolis
algorithm as sample method for allowing fluctuations in the number of chains. The
chain is composed of beads connected in a line by a spring potential. To efficiently
introduce a lipid into the system we have to construct the chain bead by bead and
select the final chain among a set of different realisations. This procedure is called
configurational bias and requires a modification of the Metropolis algorithm to restore
the correct sampling.
To perform a grand canonical simulation we have to calculate the chemical potential

of the lipids inside the bilayer starting from a sequence of snapshots obtained from
the molecular dynamics simulations. The calculation of the chemical potential is done
using the Shing-Gubbins method where we compare the probability distribution of the
energy of the chains inside the bilayer with the probability distribution of the energy
of inserting one chain in the same bilayer configuration.
Once we have set the simulation code, we run some test simulations to prove its

validity and stability.

2.2 grand canonical Monte Carlo for lipid chains

In the grand canonical ensemble we consider a system of volume V , temperature
T = β = 1 and chemical potential of the chain µc. In this ensemble the number of
chains in the system Nc is exchanged with a reservoir of ideal non interacting chains.
An ideal chain has Nb beads connected by an internal potential and does not interact
with the neighboring chains. The partition function of a ideal chain is hence:

Zc := Zc(Nb, V, T ) =
1

Λ3Nb

∫
drNbe−Hsp(rNb ) (2.1)

19



grand canonical Monte Carlo for lipid chains
CHAPTER 2. SETTING

THE MONTE CARLO SIMULATIONS

Λ is the De Broglie thermal wave

length, Λ = h√
2πm

, h is the Planck
constant, m the mass of the

particle.

The partition function of the system in the grand canonical ensemble is:

Zgc(µc, V, T ) =
∞∑

Nc=0

eµcNc

Λ3NNc!

∫
drNe−H(rN ) (2.2)

In the grand canonical Monte Carlo method, every time step it is decided with equal
probability whether to add or remove a chain from the system. The detailed balance
condition states that the flow probability of inserting one chain in a system of Nc
chains (lhs) is equal to the flow probability of removing one chain from a Nc+1 chains
system (rhs) [de Pablo et al. (1992); Adams (1974, 1975, 1976, 1979)].
To simplify the notation we use N as the total number of particles, N = NbNc.Peq(s) Probability at the

equilibrium for the state s,
Pprop(s→ s′) Probability of

proposing a new state s′,
Pacc(s→ s′) Probability of
accepting the new state s′,

N := NnNc

Peq(Nc)P+
propP

+
acc = Peq(Nc + 1)P−propP

−
acc (2.3)

We insert a new chain choosing randomly the position of the first bead and putting
the consecutive monomers at a distance bi (bond vector) from the previous one. The
change in the coordinate system is:bi (bond vector)

ri = r1 +
i∑

j=1

bj bi = ri − ri−1

Nb∏
i=1

dri = dr1

Nb∏
i=2

dbi

The determinant of the Jacobian is one as shown in the example N = 3

det(J) =

∣∣∣∣∣∣
1 0 0
−1 1 0
0 −1 1

∣∣∣∣∣∣ = 1

The partition function of a single chain is now

Zc =
1

Λ3Nb

∫ V

0

dr1

Nb∏
l=2

∫
dble

− 3b2
l

2〈b2〉 =
∫ V

0

dr1

Λ3Nb

(∫
dbe−

3b2

2〈b2〉

)Nb−1

(2.4)

=:
V

Λ3Nb
CNb−1
c (2.5)

Where the normalisation constant is define as Cc =
√

2〈b2〉πCc =
p

2〈b2〉π .
To calculate the chemical potential of an ideal chain we consider a gas of ideal chains.

Its partition function of the system in the canonical ensemble is:N total number of beads:
N = NbNc.

ZNc(Nc, V, T ) =
1

Λ3NNc!

∫
dNre−H(rN ) (2.6)

Where we exclude the interactions between the chains:

ZidNc(Nc, V, T ) =
1

Λ3NNc!

(∫
dNre−H(rNb)

)Nc
=

1
Nc!

(
V CNb−1

c

Λ3Nb

)Nc
(2.7)

The free energy of the system is hence:Stirling’s approximation:
lnn! ' n lnn− n.

F idNc(Nc, V, T ) = − lnZNc = − ln
1
Nc!

(
V CNb−1

c

Λ3Nb

)Nc
' −Nc ln

(
V CNb−1

c

NcΛ3Nb

)
+Nc

(2.8)
The chemical potential of an ideal chain is:ρ is the chain density.

µid := −
∂F idNc
∂Nc

= − ∂

∂Nc
lnZNc ' ln(Λ3ρ)− ln

CNb−1
c

Λ3(Nb−1)
(2.9)
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At each step we equally propose to insert or remove a molecule from the system.
The probability of inserting the first bead is uniform all over the volume V while the
bonds are distributed normally choosing as variance the inverse of the harmonic spring
constant.

Nb∏
l=2

e
− 3b2

l
2〈b2〉 = e

−
PN−1
l=0

3b2
l

2〈b2〉 = e−Hsp(c) Hsp(c) =
∑
l

ksp
2

bl2 =
∑
l

3bl2

2〈b2〉

ksp =: 3
〈b2〉where the variance of the Gaussian distribution 〈b2〉 is chosen to be the inverse of the

elastic potential prefactor ksp and Hsp(c) is the spring energy of chain c.
The probability to propose an insertion is then

P+
prop =

1
2

1
V

dr

∏Nb
l=2 e

− ksp2 b2
l dvetbl

CNb−1
c

The probability of a state with Nc labeled chains is

Peq(Nc, rN ) =
1

Zgc(µc, V, T )
eµcNc

Λ3N
e−H(rN )

The probability to remove one of the Nc + 1 chains with the reverse move is

P−prop =
1

2(Nc + 1)
dr

Nb∏
l=2

dbl

The lhs of the detailed balance (2.3) is now

1
2V CNb−1

c

P+
acc

Zgc(µc, V, T )
eµcNc

Λ3N
e−H(rN )−Hsp(c)

the rhs is

1
2(Nc + 1)

P−acc
Zgc(µc, V, T )

eµc(Nc+1)e−H(rNb(Nc+1))

Λ3Nb(Nc+1)

From the last two equations the ratio between the acceptance criterion of insertion
and removal of a chain is

P+
acc

P−acc
=

V CNb−1
c

Λ3Nb(Nc + 1)
eµce−H(rNb(Nc+1))+H(rN )+Hsp(c)

We have set the ideal chemical potential of the chain, µidc as

µidc = µiddens + µidsp = ln ρΛ3 − ln
CNb−1
c

Λ3(Nb−1)
(2.10)

so that the excess part is defined as the difference µexc = µc − µidc µexc = µc − µidc.
Defining the energy differences per chain E+(c), E−(c) we can write the acceptance
probability of insertion and removal like: E+(c) =

Hs̄p(rNb(Nc+1))−Hs̄p(rNbNc ),
E−(c) =
Hs̄p(rNb(Nc−1))−Hs̄p(rNbNc )P+

acc(Nc → Nc + 1) = min
(

1,
V Λ3

Nc + 1
eµ

id
dens+µ

ex
c e−E

+(c)
)

(2.11)

P−acc(Nc → Nc − 1) = min
(

1,
Nc
V Λ3

e−µ
id
dens−µ

ex
c e+E+(c)

)
(2.12)
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2.3 configurational bias: insertion

To improve the acceptance ratio for the insertion of chains we choose the position of
every bead introducing the following bias: [Mooij and Frenkel (1994); Smit (1995);
Norizoe et al. (2010)]

- the first bead is put uniformly into the system box

- every consecutive bead is chosen among a set of different configurations with
respect to its Boltzmann probability

- the chain is accepted with a probability given by the biased Metropolis algorithm

The bead l of the chain c is put at a distance bcl (bond vector) from the bead l − 1.
The bond vector bcl is chosen among a set of Nbv different bond vectors (bcl,i) normally
distributed with the probability

P c(b)db =
e−

ksp
2 b2

Cc
db

Every bond vector has a Boltzmann factor exp(−E+(bl,i))/W l
c where E+(bl,i) is the

non-spring (s̄p) added energy to the system due to the presence of the new particle
and W l

c the normalization factor.

E+(bl,i) = Hs̄p(rNrl−1rl,i)−Hs̄p(rNrl−1) W l
c :=

Nbv∑
i=1

e−E
+(bi,l) (2.13)

In the configurational bias method the probability to propose an insertion is:

P+
prop =

1
2V

drc1

Nb∏
l=2

(
e−E

+(bl)

W l
c/Nbv

Nbv∏
i=1

P c(bl,i)dbl,i

)

=
1

2V
drc1

Nb∏
l=2

(
e−E

+(bl)

W l
c/Nbv

∏Nbv
i=1 e

− ksp2 (bi,l)
2
dbi,l

CNbvc

)
(2.14)

The flow probability of the insertion in the configurational bias is:

eµcNc−H(rNbNc )

Zgc(µc, V, T )Λ3NbNc

1
2V

drc1

Nb∏
l=2

(
e−E

+(bl)

W l
c/Nbv

∏Nbv
i=1 e

− ksp2 (bi,l)
2
dbi,l

CNbvc

)
P+
acc (2.15)

2.4 configurational bias: deletion

Similar to the insertion step described above, in the deletion step we choose randomly
a chain from the system and for every bead of the chain we create a set of bond vectors
(bl,i) and calculate their energy E+(bi,l), and Boltzmann weight W l

c (see eq. 2.13).
This is called super-detailed balance and equals the counter part in the flow probability
of acceptance. The probability to propose a deletion is

P−prop =
1

2(Nc + 1)

Nb∏
l=2

(∏Nbv
i=2 e

− ksp2 (bi,l)
2
dbi,l

CNbvc

)
(2.16)

since the probability to choose a monomer in the chain is 1. We have chosen to assign
i = 1 to the set corresponding to the old chain conformation so that the product

∏Nbv
i=2
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runs only over the trial sets.
The flow probability of the deletion in the configurational bias is

eµc(Nc+1)−H(rNb(Nc+1))

Zgc(µc, V, T )Λ3Nb(Nc+1)

1
2(Nc + 1)

Nb∏
l=2

(∏Nbv
i=2 e

− ksp2 (bi,l)
2
bi,l

CNbvc

)
P−acc (2.17)

where the total energy of the system is

H(rNb(Nc+1)) = H(rNbNc) + E+(r1) +
Nb∑
l=2

E+(bcl ) +
Nb∑
l=2

ksp
2

b2
l

2.5 configurational bias: acceptance criterion

According to the super-detailed balance, the set of trial orientations of the flow prob-
ability of insertion (eq:2.15) equals the one of the deletion (eq:2.17) and reduce the
ratio between the acceptance criteria of insertion and deletion in:

P+
acc

P−acc
=

V eµ
id
dens

(Nc + 1)Λ3
Wce

µexc (2.18)

Where we have introduced the Rosenbluth weight to restore the correct sampling

Wc := e−E
+(rc1)

Nb∏
l=2

W l
c

Nbv
(2.19)

2.6 added energy

The Hamiltonian of the system is the sum of the non-spring (s̄p) (non-bonded (nb)
and bending (ben)) and spring (sp) potentials.

H(rN ) = Hs̄p(rN ) +Hsp(rN ) Hs̄p(rN ) = Hnb(rN ) +Hben(rN ) (2.20)

The non-bonded potential is express in terms of a density functional,

Hnb(rN ) =
∑
αβγ

∫
dr
vαβ
2
ρα(r)ρβ(r) +

vαβγ
3

ρα(r)ρβ(r)ργ(r) (2.21)

where αβγ iterate on the monomer type.
In a particle-based calculation we compute the local densities ρα(ri) in terms of δ
functions and weighting functions w(r)

ρα(ri) =
N∑
j

δ(ri − rj)δtj ,α ρα(ri)ρβ(ri) =
N∑
jk

δ(ri − rk)w(ri − rj)δtj ,αδtk,β

ρα(ri)ρβ(ri)ργ(ri) =
N∑
jkl

δ(ri − rj)w(ri − rk)w(ri − rl)δtj ,αδtk,γ (2.22)

We reformulate hence the non-bonded interactions as

Hnb(rN ) =
∑
αβγ

(vαβ
2

N∑
ij

w(rij)δti,αδtj ,β +
vαβγ

3

N∑
ij

w(rij)
N∑
ik

w(rik)δti,αδtj ,βδtk,γ
)

Defining the local density for the particle i, ρβi :=
∑N
j w(rij)δtj ,β the non-bonded

energy for the particle i of type ti = α is

Hiα
nb =

∑
β

vαβ
2
ρβi +

∑
βγ

vαβγ
3

ρβi ρ
γ
i

23



chemical potential of the molecules
CHAPTER 2. SETTING

THE MONTE CARLO SIMULATIONS

A ghost particle is represented by its position, type, and energy but it is not yet present
in the system and its non bonded energy is

Eαg =
1
2

∑
β

vαβρ
β
g +

1
2

∑
β

∑
p

vαβwαβ(p, g) +
1
3

∑
β

∑
γ

vαβγρ
β
gρ
γ
g

+
1
3

∑
β

∑
γ

N∑
p

vαβγ
(
ρβp + wαββ(g, p)

) (
ργp + wαγγ(g, p)

)
− 1

3

∑
β

∑
γ

N∑
p

vαβγρ
β
pρ
γ
p

=
∑
β

vαβρ
β
g +

1
3

∑
β

∑
γ

vαβγρ
β
gρ
γ
g

+
1
3

∑
β

∑
γ

N∑
p

vαβγ
(
ρβpwαγγ(g, p) + wαββ(g, p)ργp + wαββ(g, p)wαγγ(g, p)

)
(2.23)

2.7 chemical potential of the molecules

To calculate the chemical potential of a lipid we follow the method explained in the
comprehensive works of [Mooij and Frenkel (1994); Frenkel et al. (1991)]. It uses the
Shing-Gubbins scheme [Shing and Gubbins (1982, 1981)] based on the test particle
method of Widom [Widom (1963)]. The chemical potential of a lipid is the free energy
difference between two systems which differs from one lipid.

µ := F (Nc + 1, V, T )− F (Nc, V, T ) = kT ln(ZNc/ZNc+1) (2.24)

where Nc is the number of molecules, V the volume of the system, and Z the partition
function of the system

ZNc =
1

Nc!Λ3N

∫
V

drNe−βH(rN ) (2.25)

Where H(rN ) is the internal energy of a system of Nc molecules.
The probability distribution of a certain energy difference between the system with
Nc and the system with Nc + 1 molecules is

P−(u) =
〈
δ(u−Hs̄p(rNb(Nc+1)) +Hs̄p(rNbNc))

〉
Nc+1

(2.26)

P+(u) =
1

V Nc

∫
V

drNc+1

〈
δ(u−Hs̄p(rNb(Nc+1)) +Hs̄p(rNbNc))

〉
Nc

(2.27)

Where P−(u) is the probability distribution of finding the energy u among the ensem-
ble average of all the non-spring energies, Hs̄p, of a system of Nc + 1 chains. P+(u) is
the probability distribution of the energy between an added molecule in the position
rNc+1 and the remaining Nc.
To obtain P+(u) we calculate the energy of a molecule randomly put in the system.

We start putting the first bead of the chain uniformly distributed in the simulation
box V , the following beads are chosen following the distribution (see eq:2.13). The
excess part of the chemical potential is:

µex = u+ kBT ln
(P−(u)
P+(u)

)
2.8 simulation details

Among all the possible system we could simulate we specifically want to set our simu-
lations to represent the polymers created by Prof. Maskos of the University of Mainz
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[Maskos (2006)]. These polymers are made of poly(butadiene)130-b-poly(ethylene
oxide)66 diblock copolymers and spontaneously self-assembly in polymersome, whose
phase and mechanical properties are widely investigated in their works [W.Müller et al.
(2008); Maskos (2006); Jungmann et al. (2003)].

setting the interactions

We estimate the input parameters of the interactions in the following way. We consider
a chain of 66 monomers of ethylene oxide, EO, and 133 monomers of butadiene, B.
The experimental value of the end-to-end distance of this chains is Re = 8.14[nm]. The
thickness of the hydrophobic layer of the formed vesicle is d̄ = 16[nm] ' 2[Re]. The
weight density of a melt of polybutadiene is around 0.94[g/cm3] from which we calcu-
late the monomer density is 58 ·10−3[Nm/nm3] = 31.3[Nm/∆L3]. The incompatibility
between the two monomer species is give by the formula

χN =
(δB − δEO)2

kBT

V

Nc
' 60.8 (2.28)

where δB and δEO are the Hildebrandt solubility for polybutadiene and polyethylene
oxide [Mark (2007)].
The asymmetry between the hydrophobic and hydrophilic beads is chosen with the

ratio 5:1 (27 A and 5 B beads) which is necessary for the self-assembly of the chain in a
bilayer in the lamellar phase. The discretisation chosen to represent the coarse-grained
chain is 32 which is a good compromise to represent the flexibility of the polymer chains
and computational performances.

Figure 2.1: lhs) Probability
distributions of insertion
(P+(u)) and deletion (P−(u))
of molecules in a planar
bilayer. In the inset the excess
chemical potential (µex) in the
overlapping region is shown.
The straight line in the insets
shows the value of the
calculated excess chemical
potential: µex = −38.2[kBT ].

We have created a stable bilayer in a simulation box of 32 × 32 × 16[∆L3] volume
using molecular dynamics simulations (described in the previous chapter) to create
a sequence of equilibrated system configurations. From this sequence of snapshots
we have calculate the chemical potential of the polymers using the Widom insertion
method (see fig:2.1).
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2.9 test runs for Monte Carlo simulations

single chain comparison

We compare the statistical properties of the system with different simulation tech-
niques.

Figure 2.2: Probability
distribution of the: bonded
energy (lhs), non bonded
energy (rhs), and end-to-end
distance (middle) using
different simulation schemes
(see text).

The system is composed by a single chain in the solvent. The simulation is run with:
1) molecular dynamics simulations, (md NV T ), 2) Monte Carlo simulations displacing
a single bead, (mc NV T ), and 3) Monte Carlo simulations removing and constructing
a new chain, (mc NcV T ). We study the probability distribution of the bonded and
non bonded energy and the end-to-end distance (see fig:2.2).
This simulation runs confirm the correctness of the calculation of the system energy

and the structure of the chain.

gas phase

We simulate a system of non interacting lipids by considering only the internal energy
of the chain.
This test run allows us to check the consistency between the simulations with and

without configurational bias. In the gas phase the acceptance ratio is large and we
can really in few simulation steps observe the equilibration of the system. We have
measured that the excess chemical potential of a lipid in the gas phase is around
4.5 and 5[kBT ]. We have first set the excess chemical potential, µex, to a value of
4.5[kBT ] and the ideal, µiddens = ln(Nc/V Λ3), where Nc = 150. We observe that both
grand canonical simulations, with and without configurational bias, stabilize to the
same energy and number of chains (see fig:2.3). We can see from the graphs that the
equilibration is faster in the case of the configurational bias.
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Figure 2.3: Time evolution of
the energy (lhs) and number of
chains (rhs) for the grand
canonical simulations of lipids
in the gas phase with or
without configurational bias.

2.9.1 lipids in a bilayer

Once we have checked the consistency of the grand canonical simulations with and
without bias we start a Monte Carlo simulation after an equilibrated molecular dy-
namics simulation.
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Chapter 3

inclusion stability

Artificial hydrophobic compounds, like quantum dots or nanoparticles, can be stabi-
lized in the hydrophobic layer of bilayer membranes. To design a compound that can
remain stable inside the bilayer we study with the solvent-free coarse-grained model
introduced before the stability conditions for such a compound. The hydrophobic com-
pound is described by its size and hydrophobic coating, and we study the dependence
of these parameters on its stability inside the bilayer.
The weak interactive nanoparticles exit from the membrane in a short time, the

stable ones remains inside the membrane for a time at least three times longer than
the average exit time of the weak interactive nanoparticles.
The energy barrier for the nanoparticle to exit from the membrane taking out a

polymeric coating is too large to observe such an event during the simulation time.
We compare hence the chemical potential of a nanoparticle inside the bilayer with a
polymeric coated nanoparticle in the solvent and discuss the energetic stability of both
conditions.

3.1 energetic stability of a hydrophobic inclusion in
bilayer membranes

Small hydrophobic nanoparticles (like fluorescent dyes or quantum dots) can be embed-
ded in the hydrophobic layer of small lipid or polymeric vesicles to trace their position.
These vesicles can be equipped with ligand-proteins to dock to specific target tissues
and trace in vivo the position of particular tissues. The traceability of the vesicle is
hence tightly connected with the stability of the nanoparticle. We specifically map
our system into the experimental setup of Prof. Maskos of the University of Mainz
[Maskos (2006)] who created self-assembled polymersome made of poly(butadiene)130-
b-poly(ethylene oxide)66 diblock copolymers.

Figure 3.1: Sketch of a
nanoparticle, the interior
represents the metallic core,
the red layer the ZnS coating
and the green chains the
hydrophobic polymers (like
oleic acid) grafted on the
surface (lhs) to make the
nanoparticle hydrophobic.
Sketch of a nanoparticle
embedded in the bilayer
(middle). Sketch of a
nanoparticle with a polymeric
coating (rhs).

We use the solvent-free coarse-grained model introduced in the previous chapters to
simulate with high computational efficiency large patches of polymeric membranes and
explore the characteristic of a stable spherical hydrophobic inclusion (described by an
integrated Lennard-Jones potential). The first part of the work consists in mapping the
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specific system to the input parameters of the model using the data of the literature.
A nanoparticle is usual made of an hard core sphere (metallic core coated by CdSe

or ZnS) with hydrophobic polymers (oleic acid) grafted onto its surface.
The unstable nanoparticles are described by a weak interaction and exit the membrane

in a short time.
The stable nanoparticles were completely surrounded by the polymers for a time at

least three times longer than in the exit case. We have identified some intermediate
cases where the nanoparticle was sitting at the border with the hydrophilic layer and
held by the hydrophilic repulsion.

3.2 model

modelling the nanoparticle

To describe the interaction between the nanoparticle and the monomers we perform
the integration of the London-Van der Waals forces between a point-like particle and
a dense sphere [Hamaker (1937)].

Figure 3.2: Sketch
representing the nanoparticle
radius, rnp, and distances from
the the bead.

We define rnp as the nanoparticle size, ri is the distance between the center and the
bead i and x as the distance between the bead and a nanoparticle volume element.
We can see that the surface of nanoparticle at the distance x is:r2

np = r2
i + x2 − 2rx cos θ0

A(x, ri; rnp) =
∫ 2π

0

dφ
∫ θ0

0

dθ x2 sin θ = π
x

ri
(r2
np − (x− ri)2) (3.1)

The London-Van der Waals forces have an attractive U12 ∝ r−12
i and a repulsive

U6 ∝ r−6
i contribution. We integrate the potential over the volume of the nanoparticle.

U12(ri) = π

∫ ri+rnp

ri−rnp
dx

1
rix11

(r2
np − (x− ri)2)

U6(ri) = π

∫ ri+rnp

ri−rnp
dx

1
rix5

(r2
np − (x− ri)2) (3.2)

The contributions of the terms U6 and U12 are:

U12(ri) =
π

360ri

(
2rnp

(ri + rnp)9
+

2rnp
(ri − rnp)9

+
1

(ri + rnp)8
+

1
(ri − rnp)8

)
U6(ri) =

π

12ri

(
2rnp

(ri + rnp)3
+

2rnp
(ri − rnp)3

+
1

(ri + rnp)2
+

1
(ri − rnp)2

)
To remove the divergence at ri = rnp, where rnp is the conventional radius of the
nanoparticle, and for computational reason we join the potential with a linear slope
at U12 − U6 = 20[kBT ] and truncate the potential at the cut-off distance 3rnp (see
fig:3.2). The potential is shifted to zero at the cut-off distance, rc.
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Figure 3.3: Comparison
between the potential(3.3) and
the shifted 3-9 Lennard-Jones
potential: U39(ri) = ε(a/ri −
rnp + a)9 − ε(a/ri − rnp + a)3.
The potential (3.3) reduces to
the U39 potential for large
distances r. σ larger than rnp
are unphysical and lead to a
pure repulsive potential (purple
line).

Unp(ri) =


εc(ri) if r < rc

0 if ri > 3rnp
εσ6U12(ri)− εU6(ri) + ε0 otherwise (3.3)

ε is a prefactor which controls the surface energy of the nanoparticle, ε0 = σ6εU12(3rnp)−
εU6(3rnp) shifts the potential to zero at the cut off (3rnp) and rc is the position where
the force is 500[KBT/∆L], εc(r) = Unp(r+

c ) − 100(r − rc) is a junctions which limits
the values of the forces over 100[kBT/∆L].
σ represents the radius of the small volume elements of the nanoparticle which in-
teracts with the monomers. Some common values of σ range between 3 − 4[Å] but
since we are using a mesoscopic description of the nanoparticle we need to set some
empirical values for σ which do not lead to a too short-ranged (and hence atomistic)
potential. We set σ close to the cut off length of the monomer-monomer interactions
σ ' [∆L].
The potential, (3.3), in the two limiting cases rnp →∞ and rnp → 0 reduces respec-

tively to a 6-12 and 3-9 Lennard-Jones potential.
The input parameters ε, σ and rnp of the potential (eq. 3.3) are mapped in the

integrated absorbed energy, Σnp and hard core radius of the nanoparticle rhc. rhc
is the distance from the center of the nanoparticle to the point where the potential
crosses the baseline and Enp is the integral of the negative part of the potential.

rhc(ε, σ, rnp) = {r|U(r; ε, σ, rnp) = 0}; (3.4)

Enp(ε, σ, rnp) =
N∑
i

Unp(rnp, ri) (3.5)

' ρ0

∫ ∞
rhc

U(r; ε, σ, rnp)r2drdcosθdφ (3.6)

And with Σnp we define the surface energy of the nanoparticle: Σnp = Enp/4πr2
np.

The interactions of the nanoparticle with the surrounding monomers give a virial
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contribution to the pressure of the system.

P
nc/m
αβ = −

∑
i,np

∂U

∂r
(r)|ri,np

ri,npα ri,npβ

ri,np
(3.7)

Where α and β are two Cartesian coordinates and ri,np is the distance between the
monomer i and the nanoparticle.

3.3 simulation details

The molecular dynamics simulation scheme is chosen to simulate the system in NcV T
and NcPtT ensembles. The simulations are run on a box of 32× 32× 16[∆L3] volume.
The bilayer membrane is composed of 2629 chains of 32 beads per chain. The bilayer
thickness is measured to be d̄ = 4.69[∆L] and sets the length conversion between
experiments and simulations to 3.41[nm/∆L].
The Monte Carlo simulations were run in a box of size of 14 × 14 × 14[∆L3]. The

ideal chemical potential is µid = ln Nc
V = −0.79 while the excess chemical potential

was the one calculated in the previous chapter: µex = −38.2.
In the Monte Carlo simulations a hydrophobic nanoparticle sits in the center of the

simulation box and has a polymeric coating. This configuration was obtained from an
equilibrated molecular dynamics simulation.

3.4 stability

In this section we check the stability conditions for the hydrophobic nanoparticle in
the bilayer membrane.

Figure 3.4: lhs) Stability
diagram of the nanoparticle in
function of the nanoparticle
radius rnp and the surface
energy Enp. The vertical lines
represent the region of the
nanoparticle size where
experimentally were observed
stable nanoparticles [Maskos
(2006)]. rhs) Density plot of
the membrane around the
nanoparticle. The nanoparticle
(red circle) sits in the circular
hole and is held by the
repulsion with the hydrophilic
beads.

The attractive energy of the nanoparticle to the hydrophobic beads is counterbalanced
by the energetic cost of the bending of the leaflets and the rearrangements of the poly-
mers. Initially, we create a cavity inside the bilayer where we position a nanoparticle
and wait for a short equilibration time.
We have put nanoparticles of different size and surface energy in the hydrophobic core

of the membrane and we have observed which nanoparticles are stable in the bilayer.
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D polymer diffusivity (see

table:4.4), [d̄2/D] is the time
required for a lipid to diffuse of
one unit of bilayer thickness.

Weak interactive nanoparticles exit the membrane in a short time, (around 13[d̄2/D]).
A stable nanoparticle is held in the membrane for a time longer than three times the
average permanence time of a weak nanoparticle.
In the graph (see fig:3.4) we have plotted the condition of stability of the nanoparticle

depending on its size and surface energy. The region of stability and instability are
clearly identified by the black and the red lines. These lines (see fig:3.4) suggests a
linear relationship between the nanoparticle surface and the surface energy. The larger
is the nanoparticle the stronger has to be the interaction towards the hydrophobic
beads for the stability.
The blue dots contained within the red and black lines (in fig:3.4) refer to some inter-

mediate cases where the nanoparticle was held by the repulsion with the hydrophilic
beads.

3.5 chemical potential of the nanoparticle

In case of a stable nanoparticles it is not clear whether the favourable condition for a
nanoparticle would be to stay embedded in the membrane or to exit from the membrane
with a polymer coating. The energy barrier of this process is too large to observe
spontaneously such as event during a molecular dynamics simulation.
To solve this doubt we have decided to calculate and compare the chemical potentials

of the nanoparticle in the two configurations.
The chemical potential is the energy of inserting one nanoparticle into the system.

To perform this calculation we define one parameter λ that shuts off the interactions
between the nanoparticle and the polymers. The chemical potential of the nanoparticle
is obtained from:

µnp =
∫ 1

0

< ∂λUnp >NPtT dλ Unp :=
N∑
i

λUnp(ri)

We have chosen twenty different values of λ between 0 and 1 and calculated the average
interaction energy between the nanoparticle and the polymer in the membrane. The
simulation refers to a nanoparticle of rnp = 0.46[d̄] and Enp = −1436[kBT ] and we can
extract the exchange energy between the nanoparticle and the bilayer (see fig:3.5).

Figure 3.5: lhs) Average
ensemble of the energy between
the nanoparticle and the
polymer in the bilayer
depending on the shutting off
parameter λ. rhs) single
histograms for different values
of λ, all the histograms overlap
with their neighbours.

We can see in the picture (see fig:3.5) that the interaction energy between the nanopar-
ticle and the polymers smoothly decreases decreasing λ. The histograms of the energy
distributions nicely overlap as required for the weighted histogram analysis [Kumar
et al. (1992); Bartels (2000)].
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To calculate the chemical potential of the coated nanoparticle we have to impose
the condition that the polymers of the coating have the same chemical potential of
the polymers in the bilayer. For this reason we run Monte Carlo grand canonical
simulations where we can control the chemical potential of the polymers. The chemical
potential was calculated in the previous chapter from a sequence of molecular dynamics
simulations of a stable tensionless bilayer.

Figure 3.6: lhs) Average
ensemble of the energy between
the nanoparticle and the
coating polymers depending on
the shutting off parameter λ in
Monte Carlo simulations. rhs)
single histograms for different
values of λ, all the histograms
overlap with their neighbours.

In the Monte Carlo simulations the number of coating polymers fluctuates around a
mean value that depends on the parameter λ. The difference of the mean number of
polymers varies between 20 and 160, for λ < 0.3 the nanoparticle is not completed
coated. Looking at the graph (fig:3.6) the sample of the interaction energies is not
satisfactory to perform the weighted histogram analysis and calculate the chemical
potential of the nanoparticle. The two curves in the graph (3.6) show nevertheless
a strong difference between the interaction energies of the embedded and the coated
nanoparticle and allow us to state that this particular nanoparticle is energetically
more favourable inside the membrane.

3.6 conclusions

In this chapter we have developed a method to study the stability of nanoparticles
inside the bilayer. We have distinguished between weak nanoparticles that exit the
bilayer in a short time and stable nanoparticles. During the limited simulation time
of the molecular dynamics simulations we cannot state whether the nanoparticle is
energetically more stable outside the bilayer with a polymeric coating. We have chosen
one particular stable nanoparticle (described by its radius, rnp, and surface energy Enp)
to develop a method to state the energetic difference of the two configurations. We
have studied the interaction energy between the nanoparticle and the polymers in the
both configurations and found that the particular nanoparticle chosen (rnp = 0.46[d̄]
Enp = −1463[kBT ]) is more stable inside the bilayer.
Comparing to the experimental observations, stable nanoparticles were observed to

have a diameter in the range of 3 − 9[nm] [Maskos (2006)]. Even though we have
found no data about the experimental surface energy of the nanoparticle, we refer to
the stability diagram (see fig:3.4) to estimate that the surface energy should range
between 20− 100[kBT ].
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Chapter 4

mechanical and phase
properties of planar
membranes

The model depends on a set of input parameters that modify the mechanical properties
and phase behaviour of the membrane. We refer to the values written in the table
below (our reference model) and study the dependence of the mechanical properties
of self-assembled bilayers on these parameters.

Table 4.1: Reference set for
the parameters used in the
simulations

ρcoex=6 [Nc/∆L3] χN =30 kN =70
Nb =10 Nphob=8 Re =2 [∆L]
ksp =20.537 kb =3 vBB=-0.1

To reproduce the behavior of membranes under biological condition we explore the
phase space to identify the range of the input parameters where the lipids self-assemble
in a planar fluid bilayer. The change in the chain architecture conditions the phase
transition from the lamellar to the inverted hexagonal phase. We choose to change the
compressibility to move the lipid bilayer between the fluid/gel phase transition.

Figure 4.1: Sketch of the
molecules studied with this
model: single tail lipid [8-10],
PC lipid [9-13], PE lipid [9-12],
flexible polymer [27-32], oil [6],
cholesterol [5-1], where the
brackets indicate [Nphob, Nb].

To set a time and length scale for the self-assembled system, we calculate the lipid
diffusivity and the membrane thickness and compare the obtained values to the ones
known in the literature. Thanks to the softness of the model, we can successively
calculate different free energy contributions from thermodynamics fluctuations and
obtain the values of the unperturbed system. These values are the reference values to
quantify the local membrane perturbation around the inclusion.
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4.1 lipid composition

The lipid composition we study are lipid chains composed by one block of hydrophobic
beads and one block of hydrophilic beads.
If not further specified, we refer to a lipid with a single tail where the hydrophobic

block has 8 beads and the hydrophilic 2. Referring to two tails lipid we distinguish
between PE and PC lipids. The PE lipids have 9 hydrophobic beads and 3 hydrophilic,
the PC lipids 9 hydrophobic and 4 hydrophilic. Oil is represented by short chains
composed by 4 hydrophobic beads, and cholesterol has an additional hydrophilic bead
at the top.

4.2 exploring the phase space

The parameters that mainly control the morphology of the self-assembly structure are
the incompatibility and the asymmetry of the chains.

Figure 4.2: Lipid
architectures: lhs) [9-10],
middle) [9-12] double tailed,
rhs) [9-13] double tailed
corresponding to the phases:
lhs) inverted micelle, middle)
inverted hexagonal, rhs)
lamellar. In the middle picture,
elongated linear stalks connect
the membranes of the stack
and indicates an inverted
hexagonal phase. The
relaxation into an inverted
hexagonal phase is imitated by
the geometrical constrictions of
the simulation box.

By changing the architecture of the chains we reproduce the micellar, lamellar and
inverted hexagonal phases [Cullis et al. (1986); Israelachvili (1998)].
A lipid membrane has a rich phase behaviour which deeply influences the mechanical

properties of the self-assembled structure. Changing the compressibility kNb and the
lateral pressure, Pl, we have identified different phases and found the parameter range
corresponding to the fluid state.

Figure 4.3: Top view
representation of the chain
conformation in: lhs) non
interdigitated gel phase (only
the lower leaflet is shown),
middle) interdigitated gel
phase, rhs) and fluid phase. On
the left hand side the color
legend is shown.

Table 4.2: Color
representation of the chain,
every color represents a
different chain conformation.

Color legend
upper stretch • upper flexible • upper tilted •
lower stretch • lower flexible • lower tilted •

Varying the density consistence, ρcoex, the compressibility, kN , and the lateral tension,
Pl, we can represent the rich phase behavior of lipid bilayers. The phases shown in
the picture (see fig:4.3) are: Lβ) non-interdigitated gel phase (ρcoex = 5, Pl = 0.28),
LβI interdigitated gel phase (ρcoex = 5, Pl = 0.40), Lα) fluid (ρcoex = 6, Pl = 0). We
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define a stretched lipid when: zi,i+1 = zi+1 − zi normal distance
between the bead i and the bead
i+ 1, ri,i+1 radial distance
between the bead i and the bead
i+ 1.

Nb∑
i

|zi,i+1|
ri,i+1

< 0.7 (4.1)

and flexible otherwise. The tilted chains are the chains whose orientation is smaller
than 60o with respect to the bilayer normal.

4.3 thickness

The thickness d̄ is defined as the width at the half height of the hydrophobic density
profile.

Figure 4.4: Density profile for
the hydrophobic (green) and
hydrophilic (blue) monomers
and the definition of the
thickness for the soft
coarse-grained model (lhs) and
the Martini force field. In the
plots the density of tails and
heads refer to the homogeneous
membrane, the density of oil
and cholesterol is drawn in the
same picture only for the
spatial reference.

Since the membrane is fluctuating the total density profile is the average of the single
contributions of small patches of area [4∆L2]. The patches are chosen to be approx-
imately planar and their density profiles are summed, shifting the center of mass to
the same reference point.
The oil sits on the equatorial plane of the membrane, while the cholesterol sits at the

interface (see fig:4.4). The density calculated for the soft coarse-grained model is much
less accurate than a coarse-grained simulation with the Martini force field calculated
with the same method (see fig:4.4) due to the simplification of the interactions and
lipid constituents.
Out of the Martini simulations we measure the width at half maximum of density

of the hydrophobic beads and measure 3.03[nm]. Using the same definition of the
bilayer thickness we parametrise the length of our model: 1[∆L] = 1.086[nm]. We
refer to the comprehensive work of [Kučerka et al. (2011)] for comparing different
definitions of the membrane thickness from the analysis of small-angle neutron and X-
ray scattering data. In the article the hydrocarbonate region thickness is 2.9[nm] thick
(POPC bilayer @303[K], d̄ = 2.6[nm] for a DMPC bilayer at the same temperature)
and it is described as reference thickness where the function of an integral membrane
protein is affected by hydrophobic mismatch.

4.4 time scale

The simulation time is compared with the experimental time mapping the value of the
lipid’s diffusivity onto the known values of the literature. Atomistic and systemati-
cally coarse-grained simulation models are capable of reproducing the experimentally
observed lipid diffusivity [Apajalahti et al. (2010b); Falck et al. (2008)].
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Figure 4.5: Dependence of
the mean square displacement
on the input parameters kNb.

The diffusion coefficient, D, is defined as the asymptotic limit of the lateral mean
square displacement, msd(t),

D: Diffusion coefficient, msd(t):
mean square displacement

divided by the total time t:

D = lim
t→∞

msd(t)
4t

msd(t) :=
〈(

x(t)− x(0)
)2〉 (4.2)

To improve the statistics, for every time, t, we average all the time differences with
the same duration:

x(j∆t)− x(0) =
∑
i

Ni
(x((i+ j)∆t)− x(i∆t)) (4.3)

This average can deviate from the single time differences if the system is not equili-
brated or perturbed since it depends only on time interval differences. To calculate the
diffusion coefficient we plot the mean square displacement in the axis (1/t,msd(1/t)/t)
and extrapolate the value for msd(0). We also calculate the diffusion coefficient from
the slope of the msd versus time in the diffusive regime.
For kNb > 80 the membrane is in a gel phase [Hömberg and Müller (2010)] and the

diffusivity decreases significantly. The simulation time, ts, is the internal time used
in the simulation and it is connected with the integration time step ∆ts = 0.005[ts].
The current simulation time is t = Ns∆ts[ts] where Ns is the current number of
steps.t = ∆tsNs current simulation

time, ∆ts integration time step,
Ns number of steps.

To set the time scale of the simulations we compare the diffusivity calcu-
lated above with the diffusivity calculated in experiments. There is a rich litera-
ture about experimental values of lipid diffusivity obtained with different methods:
pulsed NMR of multilamellar POPC liposome (D = 8.6±0.2[µm2/s] [Gaede and Gar-
wrisch (2003)]) using fluorescence correlation spectroscopy (FCS) on POPC bilayers
(D = 7.3± 0.25[µm2/s] [Kyong and Sheets (2008)]), dual focus FCS on POPC/POPE
mixtures (D = 12± 2.5 · [µm2/s] [Weiß and Enderlein (2012)]), and using florescence
recovery after photobleaching (FRAP) (D = 8± 4[µm2/s] [Kocun et al. (2011)]). We
choose to use the third value because does not refer to a supported bilayer (where the
diffusivity is influenced by the presence of the support) and obtain: 1[ts] = 0.93[ns].
The time definition is used to define the relaxation time of the lipids inside the mem-
brane. The relaxation time is a useful information to decide how long to simulate
before writing on a file the system configuration. For an efficient occupation of the
memory, the system configurations should be separated by some relaxation time units
to avoid too strong correlation between the subsequent snapshots. To efficiently use
the simulation time, the time between consecutive snapshots can be chosen around
some tens of relaxation time units, this allows to have weak correlated configurations
for the calculations of the ensemble averages.
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4.5 thickness, lateral area, and density fluctuations

In this section we calculate the coupling modulus of the fluctuation of the thickness,
lateral area and density for a planar membrane.

Figure 4.6: lhs)
Compressibility for different
values of the input parameter
kNb. rhs) Harmonic
approximation derived from
the ensemble distribution of
the membrane thickness for a
patch size of 3× 3[∆L2].

Thanks to the softness of the model we calculate these free-energy contributions from
the thermal fluctuations using the linear response theorem which relates the fluctua-
tions of a system around its equilibrium state to its response to weak perturbations
[Plischke and Bergensen (1994)].
We consider one quantity sL which can be: the thickness of the membrane, dL, the

number of chains per area, σL = nL/L
2, or the local density, ρL = nL/σLdL. Each

quantity is defined on a portion of the membrane, that we call patch, with area L×L.
We define a coupling modulus, ks, which can be: the elastic coupling, kel, the area
compressibility, kcom, or the density compressibility, kmelt. The coupling modulus ks
controls the amplitude fluctuations of the quantity sL.
We express the free energy around the value sL expanding the isothermal free energy

in a Taylor series in powers of α = ∆sL/s̄L [Daily and Elson (1984)]: ∆sL = (sL − s̄), α = ∆sL/s̄, L
lateral dimension of the patch
considered, dL thickness of the
patch, nL = σLL

2 number of
chain in the patch, ρL = nL/dL
density of lipids in the patch.

Fal − F 0
al

=
(∂F
∂α

)
T
α+

(∂2F

∂α2

)
T

α2

2
+ . . . (4.4)

In equilibrated systems 〈s〉 = s̄ and therefore the linear term vanishes. We express the
free energy difference in:

∆Fs =
∫

dxdy
ks
2

(s(x, y)− s̄)2

s̄2
+O

(
(s− s̄)4

)
(4.5)

To determine the coupling modulus, which controls the amplitude of the fluctuation
of s around the mean value s̄, we calculate the statistical fluctuation of the quantity
s depending on the size L × L of the patch analyzed [Müller and Schick (1996)]. In
thermodynamics the fluctuations of an extensive quantity scale like the inverse of the
number of chains: σ̄c = Nc/∆L2

∆s2
L =

〈s2
L〉 − 〈sL〉2

Nc
= σ̄c

〈s2
L〉 − 〈sL〉2

L2
Nc = σ̄cL

2 (4.6)

The coupling modulus is the limit for infinite size patches of the fluctuations of s.

1
ks

= lim
L→∞

L2〈∆s2〉L
s̄2

(4.7)

To calculate the coupling modulus we plot the L2 < ∆s2 >L/s̄
2 versus the inverse of

the patch area and extrapolate the value of the curve for a zero value of the abscissa
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Figure 4.7: Standard
deviation versus patch area,
(〈∆s〉, L2), (lhs), fluctuation
versus inverse patch area,

(L
2〈∆s〉
s̄2

, L−2), (rhs).

(see fig:4.7). The first point on the left hand side of the graph (see fig:4.7) represents
a patch which spans almost all the simulation area. In this case the fluctuations of
the number of lipids (which affects the area and density compressibility) are limited
by the fixed amount of lipids. We exclude this point from the analysis.

4.6 energetic contributions

The free energy for the fluctuations of the thickness, the lateral area, and the density
fluctuation is:

∆Ffluct =
∫

dxdy
(
kel
2

(d− d̄)2

d̄2
+
kmelt

2
(ρ− ρ̄)2

ρ̄2

)
(4.8)

We have excluded the area compressibility term since the variables are not independent:
σ = dρ. The increase or decrease of the thickness of the membrane causes a stretching
or compression of the lipids which involves a change in the lateral area. Since the
density is not independent from the thickness we propagate the fluctuations of the
independent variables:V = Ad, dρ = σ

〈∆σ2〉 = 〈∆(ρd)2〉 =
(
∂σ

∂d

)2

〈∆d2〉+
(
∂σ

∂ρ

)2

〈∆ρ2〉 = ρ̄2〈∆d2〉+ d̄2〈∆σ2〉 (4.9)

Dividing the last equation by σ̄2 we obtain:

〈∆σ2〉
σ̄2

=
〈∆ρ2〉
ρ̄2

+
〈∆d2〉
d̄2

(4.10)

This equation sets a relation between the coupling moduli:

1
kcom

=
1

kmelt
+

1
kel

(4.11)

We see in the graph (see fig:4.7) that this relation is satisfied within 25%. The difference
arises from the head groups which additionally restrict area fluctuations.
To express the free energy in terms of thickness and area per lipid density we substi-

tute ρ = σ/d and we expand in series of (d− d̄) obtaining:

(ρ− ρ̄)2

2ρ̄2
=

(σ − σ̄)2

2σ̄2
+

3σ2 − 2σσ̄
σ̄2

(d− d̄)2

2d̄2
+O

(
(d− d̄)4

)
(4.12)

where we have have considered zero the averages of the quantities (d− d̄).
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Figure 4.8: Sketch of the
continuum description of a
lipid membrane.

The most relevant energetic contributions for our purpose are summarised in the
following free-energy expression: a = 1/σ, (σ − σ̄) = −(a− ā)/ā2, γ

isotropic tension, R1, R2 two
orthogonal principal curvatures.

F =
1
2

∫
dxdy

(
kben

(
1
R1

+
1
R2

)2

+ kmelt
(ρ− ρ̄)2

ρ̄2
+ kcom

(a− ā)2

ā2

)
(4.13)

The first term of the free energy is the bending energy calculated by integrating the
local curvatures and has modulus kben [Helfrich (1978)]. The energetic contribution of
the area compressibility expressed in the NV T and NPlT ensemble are:

FNV T =
kcom

2
(a− ā)2 FNPlT = FNV T −Aγ γ :=

∂FNV T
∂A

(4.14)

The pressure in this case is γ = kcom(a−ā)/ā. For linear changes in the lateral area the
modulus γ controls the stretching energy of the membrane. For tensionless membrane
(most of the conditions studied) this energy is zero.

Monge representation

For small deformations of the membrane we can describe the membrane as a unique
function, h(x, y), (Monge representation) where every point on the plane (x, y) is
assigned a unique membrane height. Following the analysis in [Farago and Pincus
(2004)] way we can transform the membrane height in Fourier space:

hq =
∫

dr h(r)e−ırq h(r) =
1

2π

∫
dq hqe

ırq (4.15)

The total area of the membrane is: L box size, Ns number of samples,p
1 + (∇h)2 ' 1 + (∇h)2.

A =
∫

dxdy
√

1 + (∇h)2 A = L2 +
∫

dq q2hqh−q +O(|hq|4) (4.16)

To total Gaussian curvature is:

J =
∫

dxdy (∇2h)2 J =
∫

dq q4hqh−q +O(|hq|4) (4.17)

The expression of the Hamiltonian in the Monge representation is:

F (h) =F (h = 0) +
1
2

∫
dxdy

(
kben(∇2h)2 + γ(∇h)2 + keld

2
)

(4.18)

F (h) =F (h = 0) +
∫

dq
((
kbenq

4 + γq2
)
hqh−q + keldqd−q

)
(4.19)

The equation (4.14) recalls the definition in the Monge representation of the equation
(4.19).
The thickness of the membrane is defined as: hup height of the upper

monolayer, hdown height of the
lower monolayer.d(r) := hup(r)− hdown(r) (4.20)
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We calculate the partition function from the surface Hamiltonian H(h(r)):jq are Lagrange multipliers to

enforce h̄q = 〈hq〉

Z =
∫
D[{hq}]e−H({jq})−

P
q hqjq (4.21)

The mean value and the standard deviation of the height fluctuation are now:G is the Gibbs free-energy:
G = − lnZ

h̄q = 〈hq〉 = − ∂G
∂jq

〈hqh−q〉 − 〈hq〉〈h−q〉 = − ∂2G

∂jq∂j−q
(4.22)

We relate the Helmoltz free energy to the Gibbs free energy via:∂F
∂hq

= jq

F ({hq}) = G({jq}) +
∑

q

〈hq〉jq (4.23)

Recalling the former expression of the free energy (eq.:4.19) we can explicitly calculate
jq:

jq = L2(γq2 + kbenq
4 +O(q6))〈hq〉 (4.24)

Substituting (4.24) into (4.23):

G ' F ({〈hq〉} = {0})−
∑

q

jqj−q

2L2(γq2 + kbenq4)
(4.25)

Considering (4.22) we can finally write the power spectrum of the height fluctuation:

〈hqh−q〉 = 〈|hq|2〉 =
1

L2(γq2 + kbenq4)
(4.26)

While the power spectrum of the thickness fluctuation (for long wavelength motion)
is:

< d(q)d(−q) >=
1

L2kel
(4.27)

Figure 4.9: lhs) Monge
representation of the bilayer:
height (top) and thickness
fluctuations (bottom), the color
map represent the height (top)
and the thickness (bottom).
rhs) Power spectrum of the
local height of the membrane
〈h(q)2〉 versus the reciprocal
squared space, q2.

A more detailed model for the energetic contributions considers the membrane com-
posed by two coupled monolayers instead of a single sheet [West et al. (2009); Bran-
ningan and Brown (2007); Seifert (1997); Szleifer et al. (1990)]. The bending of the
membrane cause the compression of one monolayer and the extension of the opposed
one and other energetic contributions have to be considered. The neutral surface of a
monolayer, (h↑(x, y), h↓(x, y)), is defined by the property that bending and stretching
are decoupled in energy when both deformations are defined with respect to it and it
is distant d̄/2 from the bilayer midplane [Seifert (1997)]. We define the midplane and
the thickness fluctuations:

h =
h↑ + h↓

2
d = h↑ − h↓ + d̄ (4.28)
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The total energy per molecule of a symmetric bilayer is [Branningan and Brown (2007)]:
c0 spontaneous curvature,

ζ := c0 − Ā∂c0A, where Ā is the
projected area: Ā = L2.fh =

kben
2

(∇2h)2 +
kcom
d̄2

d2 + kbenc0∇2d+ kbenζ
d

d̄
∇2d+ 2kben(∇2d)2 (4.29)

The interpretation of the former free energy is the following: the first term is the
Helfrich bending associated with a tensionless surface with vanishing spontaneous
curvature that the peristaltic fluctuations do not considerably influence. The second
term corresponds to area stretching, the third and the forth reflect bending energetics
due to peristaltic modes. Spontaneous curvature terms vanish in the undulations since
both bilayers have opposite contributions.

Figure 4.10: Sketch of the
discrete description of a lipid
membrane.

To take into account the microscopic protrusions we define the fields z↑(x, y) and
z↓(x, y) that are defined by the conjunction point between the hydrophobic and the
hydrophilic beads. The microscopic protrusions, z±, describe the local packing and
reduces to h± in case of continuum description. They are important to describe the
influence of the surface tension on the energy since it describes the exposition of the
lipid tails to the solvent water: ∆A = (A− Ā), kλ, γλ are the

protrusion constants.

fλ = γλ(∆A↑ + ∆A↓) +
kλ
2

(z↑
2

+ z↓
2
) (4.30)

In differential geometry the entire free energy is expressed as: z± = (z↑ ± z↓)/2

F =
∫

dxdy
(
kben2(∇2h)2 + kλ(z+2 + z−

2) + γλ
(
(∇z+)2 + (∇z−)2

)
(4.31)

+ 2γλ(∇h∇z+ + 2∇d∇z−) +
kcom

2
d2 + kbenc0∇2d+

kbenζd

d̄
∇2d+

kben
2

(∇2d)2
)

From this relation we can see that the height and the thickness fluctuations are de-
coupled.
In the work of [Branningan and Brown (2006, 2007)] the power spectrum of the former

free energy is simplified in the following form where peristaltic and bending modes are
separated:

〈h(q)h(−q)〉L2 =
1

kbenq4
+

1
2(kλ + γλq2)

(4.32)

〈d(q)d(−q)〉L2 =
1

kbenq4 − 4ζkbenq2 + 4kel/d̄2
+

1
2(kλ + γλq2)

(4.33)

The power spectrum includes the coupling between the fluctuations and the peristaltic
motion considering the large compressibility of the system. The long wavelength region
of the spectrum (small q, see fig:4.9) is fully represented in the equation (see eq:4.26).
The correction by West and Brown (see eq:4.33) are used to accurately fit the spectrum
on the short wavelength region (large qs, see fig:4.9). After having fitted the spectra
we realize that the contribution of kλ is negligible, (kλ ' kel/1000) and conclude
that (eq:4.27) is accurate enough for determining kel. From the considerations of
[Branningan and Brown (2006)] (eq:4.26) is not a reliable approximation for wavelength
on the order of the membrane thickness and in this regime diverges from (eq:4.33).
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For a determination of the bending rigidity we fit the power spectrum using the equa-
tion: (eq:4.33). We have five parameters and two curves to fit (height and thickness
power spectra) (see fig:4.9). We fit the first curve to obtain the bending rigidity of the
membrane kben and the protrusion constants kλ, γλ. Then we fit the second one and
obtain the elastic coupling kel and the area compressibility kcom.
The fit is performed by calculating the logarithm of the data and fitting the logarithm

to assure the correct weighting of the maximum likelihood along the different orders
of magnitude.

4.7 tables

In the following tables we summarize all the calculated values for the different model’s
parameters. We have investigated the change in the energetic contribution depending
on the compressibility kNb (see table:4.3), on lipid architecture (see table:4.4) and on
different lipid composition (see table:4.4).

compressibility change

Table 4.3: Summary of all the
quantities calculated for the
different values of the
compressibility kN . D:
diffusivity, kben bending
rigidity, kel elastic coupling,
kcom area compressibility, d̄
mean thickness, ā mean area
per lipid, kmelt density
compressibility.

kNb = 70 kNb = 80 kNb = 120 kNb = 150 units
D−1 76.6 124 3125 3636 [ts∆L2]
d̄ 3.25 3.41 3.49 3.49 [∆L]
ā 0.25 0.24 0.22 0.23 [∆L2/Nc]

fluctuation
kel 38.75 50 - - [kT/∆L2]
kcom 22.72 31.5 - - [kT/∆L2]
kmelt 34.6 43.1 - - [kT/∆L2]

spectrum
γλ 10.68 12.42 11.49 11.83 [kT/∆L2]
ζ/d̄ 0.14 0.098 0.072 - [∆L2]
4kel/d̄2 7.85 8.9 - - [kT/∆L4]
kben 12.5 16.75 34.73 42.54 [kT ]

Between kNb = 80 and kNb = 100 the membrane has a phase transition between
the fluid and the gel phase and we observe a consistent drop in the lipid diffusivity
and increase in the bending rigidity. In the gel phase fluctuations are damped and the
simulation time required to have a good sample of data to resolve peristaltic motion is
several times the simulation time required in the fluid phase. It was hence not possible
to gather enough statistics to calculate the elastic coupling in the gel phase.
We convert our energy using assuming that the system temperature is 300[K], hence

1[kBT ] = 4.1418 ·10−21[J ]. Referring to values known in the literature for pure DOPC
and POPC bilayers the bending modulus is kben = 21.73[kBT ] [Kocun et al. (2011)]
and conclude that our model is 30% softer than the real system.

architecture change

In the following we investigate the material properties of the membrane under change
in the lipids architecture (see table:4.4).
The label 32 refers to long flexible chains (the polymer model), 8-10 refers to single

tail lipids with 8 hydrophobic beads and 10 in total, the PC lipids have two tails, nine
hydrophobic beads and four hydrophobic, the PE lipids have nine hydrophilic beads
and three hydrophobic. We observe that the PC bilayers are stiffer than the PE.
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Table 4.4: Summary of all the
quantities calculated for the
different lipid architectures
(kNb = 70).

32 8-10 PC=9-13 PE=9-12 units
D−1 0.67 76.6 48.8 39.6 [ts/∆L2]
d̄ 4.69 3.25 2.26 3.05 [∆L]
ā 0.41 0.25 0.32 0.24 [∆L2]

fluctuation
kel - 50 - 32.6 [kT/∆L2]
kcom - 31.5 - 20.8 [kT/∆L2]
kmelt - 43.1 - 28.2 [kT/∆L2]

spectrum
γλ - 10.6 5.76 5.27 [kT/∆L2]
ζ/d̄ - 0.14 -0.313 0.086 [∆L2]
4kel/d̄2 - 7.84 3.3 3.96 [kT/∆L4]
kben - 12.5 9.54 8.9 [kT ]

composition change

The mechanical properties of the membrane can significantly change by membrane
composition. In this section we show the change in the material properties by different
lipid compositions.

Table 4.5: Summary of all the
quantities calculated for the
different lipid composition
(kNb = 70).

c-links [8-10] PC+oil PE+chol units
d̄ 3.29 2.39 2.29 [∆L]
ā 0.25 0.42 0.34 [∆L2]

fluctuation
kel 39.7 18.5 14.1 [kT/∆L2]
kcom 27.0 13.4 9.3 [kT/∆L2]
kmelt 37.3 10.9 7.4 [kT/∆L2]

spectrum
γλ 15.5 12.4 6.8 [kT/∆L2]
ζ/d̄ 0.56 - - [∆L2]
4kel/d̄2 - 6.26 4.72 [kT/∆L4]
kben 14.60 9.34 7.61 [kT ]

For each bilayer we add 10% of the number of lipids of the the components written
on the first line of (table:4.5) to the respective bilayer. The label c-links means the
addition of a bond between two head groups represented by an harmonic spring with
prefactor ksp = 10[kBT/∆L2]. The presence of cross links increases slightly the bend-
ing rigidity of the membrane. The bending rigidity of PE bilayers decreases with the
presence of cholesterol and does not significantly change by adding oil in PC bilayers.
The description we use to define lipids and other molecules is semplicistic and it is not
able to capture the complexity of the atomic interactions. It was for example observed
that the presence of cholesterol increases the bending rigidity of monosaturated lipid
bilayers (DMPC, POPC) but does not influence the the bending rigidity of double-
unsaturated lipid bilayers (DOPC) [Gracià et al. (2010)]. Looking at the architecture
of the cholesterol in the model (see fig:4.1) we should probably define the molecule as
a general fatty acid since we are not distinguishig between saturated and unsaturated
bonds and we are not representing one of the most important feature of the cholesterol:
the tetracyclic rings.

4.8 modeling of an experiment

One method to experimentally determine the stiffness of membranes consists of indent-
ing them with the tip of an atomic force microscope (AFM) a lipid vesicle [Li et al.
(2011)] or a lipid [Kocun et al. (2011)] or polymeric [Kocun et al. (2010)] membrane.
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Figure 4.11: lhs) Sketch of
the indentation of a vesicle by
an elliptical tip. rhs)
experimentally measured
curves of the indentation of
liposomes for different vesicle
diameters, dves[Li et al.
(2011)].

Since in such experiments the results depend both on the intrinsic membrane prop-
erties and the experimental boundary conditions, we run a sequence of simulations to
control for the influence of the following properties that might be difficult to control
in experiments:

• size of the tip

• speed of the tip

• contact angle between the supporting wall and the vesicle

• size of the vesicle

We perform the simulations using a vesicle sitting on a surface attractive towards the
lipid head-groups by an attractive Lennard-Jones potential (εwall = 1[kBT ]). We de-
scribe the tip as an ellipsoidal repulsive Lennard-Jones potential (εtip = 0.0004[kBT ])
defined by a normal rn and two equal lateral rl axis:rn normal axis of the ellipsoid, rl

lateral axis of the ellipsoid, di
distance between the ellipsoid

surface and the bead i. Utip(di) := εtip

(
rl
di

)12

− εtip
(
rl
di

)6

(4.34)

d2
i := (xnp − xi)2 + (ynp − yi)2 +

(
rl
rn

)2

(znp − zi)2 (4.35)

We slowly decrease the position of the tip, ztip, and calculate the response force Fz
which is the normal component of the total force exerted on the tip.
The stiffness, kstiff is given by the relation [Li et al. (2011)]:

Fz = kstiff∆ztip (4.36)

The interaction between the vesicle and the plane can be mapped to the experimental
data via the ratio: vesicle height/vesicle diameter. We have mapped the force of the
system comparing the line tension of the pore (see seventh chapter). The abscissa in
the graph (see fig:4.12) refers to the distance between the center of the tip and the
plane.
In the experimental set-up [Li et al. (2011)] the tip size is rl = rn ' 20[nm] and

the tip speed is 3000[nm/s]. This tip speed is too slow to be able to run comparable
simulations. We use a tip speed of 0.0625[nm/ns] and we compare the results of the
descending tip with a sequence of simulations where the tip remains at a fixed position.
To perform the first calculation we average over five different indentation simulations
with different starting conditions (fast motion).
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Figure 4.12: Indentation
versus response for a 20[nm]
radius liposome. The red curve
refers to the average force
between the tip and the
liposome at fix tip height (stop
motion), the blue curve refers
to the fast speed motion. We
have fitted both curves in the
first, I, and second, II,
indentation region (see text).

To perform the second calculation we have to equilibrate the system for each tip
height for around 500[ts] and then average the normal component of the force (stop
motion). We use 12 different tip heights to reconstruct the indentation line. The ratio
between the time of the two different calculations is estimated to be 10 times. The stop
motion simulations are much more time demanding but the fast motion ones present
an irregularity in the profile that is visible in the decrease of force with indentation
(see fig:4.12). This fall is due to a residual momentum imposed on the vesicle in
the transition where the membrane in contact with the tip is flat. The stop motion
does not show thickness irregularity and provides a more realistic description of the
real experiment as shown in (fig:4.11). The stiffness measured from the experimental
indentation (see fig:4.11) has to be corrected by: kind slope of the indentation

curve,
ktip = 0.0390± 0.005[nN/nm]
stiffness of the tip of the AFM.

1
kstiff

=
1
kind

− 1
ktip

(4.37)

The non equilibrium free-energy of the vesicle deformation can be calculated using the
Jarzynski equality [Jarzynski (1997)]:

∆Find = ln
〈
e−W

〉
(4.38)

Where W is the work done on the vesicle: W = Fz∆ztip.
Both in experiments and in simulations we identify two regions in the indentation

curve: the first region corresponds to small indentations (until 35% of the total height),
the second corresponds to large indentations (until twice the membrane thickness when
the two bilayers start to fuse) (see fig:4.12). The ratio between the slope in the two
regimes is around ten times both in experiments and simulations.
The value of the vesicle stiffness is increased by the effect of the fast motion of the

tip as observed in experiment [Li et al. (2011)]. The stiffness calculated by the stop
motion indentation is 30% smaller than the experimental value and this is probably
due to the softness of the model (a similar deviation is observed comparing the area
compressibility measured in this chapter (see table:4.3) with the experimental data on
synthetic lipid bilayers [Kocun et al. (2011)]).

boundary condition contributions

An interesting physical question is whether the stiffness is dependent on the size of
the vesicle.
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Figure 4.13: lhs) Stiffness of
the vesicle as a function of the
curvature, the experimental
data refer to the indentation of
DMPC liposomes [Li et al.
(2011)], the simulation data
refer to fast motion
simulations. rhs)
characteristics of the different
indentation simulations. αcont
is contact angle between the
vesicle and the substrate.

rves rn − rl kstiff αcont
15 6-8 31 36o

15 20-20 49.0 36o

19.2 20-20 23.2 55o

19.2 20-20 23.7 30o

25 10-10 17.1
30 10-10 11.7

[nm] [nm] [pN/nm]

Lipid membranes are much more complex than elastic sheets, and at high curvature
the compression of lipids, the thickness variation, and the induced curvature around
the tip should influence the response force.
The influence of the tip size on the stiffness measurement is done by simulating the

same indentation using different tip radii: rn = 6[nm] and rl = 8[nm] and rn = rl =
20[nm].
From the table (see fig:4.13) we observe a change of 30% in the stiffness.
To analyze the influence of the speed we have compared a single indentation simulation

(tip speed=0.0625[nm/ns]) with a sequence of simulations where the tip was at a fixed
constant height. In the graph (4.12) we can observe the difference in the indentation
curve depending on the speed of the tip.
We observe that the contact angle between the vesicle and the substrate αcont does

not influence significantly the indentation curve (see table:4.13).

Figure 4.14: Thickness profile
of the vesicle obtained from
isolines of the density of the
lipid tails correspondent to
three different indentation.

A significant change in the stiffness is caused by the radius of the vesicle. We can see
that the resistance of the vesicle to indentation decreases of 60% from doubling the
vesicle radius from 15 to 30[nm]. With respect to the experiments we calculate smaller
values of the vesicle stiffness but we observe a similar behaviour in the dependence
between the vesicle radius and the stiffness.
With respect to the thin shell finite element calculation [Li et al. (2011)] we can

extract more precise information about the shape deformation of the vesicles. We
calculate the density plot of an indented vesicle on a slab passing through the center
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of the vesicle and with a width of 4[nm].
We have decided not to calculate the radial density profile because the fluctuation

in shape distorts the thickness profile at large radial distances. From density profiles
we extract the isolines that give precise information about the local curvature and
thinning of the membrane (see fig:4.14), both information are not available neither in
experiments nor in finite elements calculations.
This small set of simulations shows clearly that the deformation rate, the size of the

indenting ellipsoid and the radius of the vesicle all have a huge effect on the simulated
vesicle stiffness. A more detailed analysis of the parameter space will be necessary to
map the exact relations and to check if the continuum mechanics approach followed
by [Li et al. (2011)] ignores important physical aspects of the experiments.

4.9 conclusion

In this chapter we have identified the lipid architecture and the parameter range where
the lipids self-assemble in fluid planar bilayer. The input parameters of the model can
be mapped into the macroscopic measurable values calculating the mechanical proper-
ties of the planar membrane. We calculate at first the thickness profile of the membrane
and the diffusivity of lipids to set the length and time scale of the system. Succes-
sively, we have shown some relevant energetic contributions in shape deformation of
bilayers. These values will be used in the next chapters as reference to study the local
modification around the fusion objects and to map the continuous model calculations.
As a novel application we have used our solvent-free coarse-grained model to calculate
the stiffness of liposomes and compare the results with finite elements calculations and
experiments. We have shown the dependence of the final measurements on the indeter-
mination of the environmental conditions and achieved a good qualitative agreement
with the experiments.
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Chapter 5

stalk dynamics
and morphology

The stalk is a lipid bridge between two lipid membranes and a fundamental inter-
mediate structure in the process of membrane fusion. The formation and evolution
of the stalk is a collective phenomenon, which involves the interaction and change of
conformation of many lipids.
We use our coarse-grained solvent-free model to simulate a stalk between two op-

posed membranes. The absence of solvent molecules avoids the non trivial problem of
re-equilibrating the number of solvent molecules between the two bilayers present in ex-
plicit solvent models and the hydration repulsion can be controlled via the interactions
between the lipid head groups. Depending on the type and architecture of lipids we
can change the stability and morphology of the stalk. Circular stalks are metastable
and we calculate the average density profile and fluctuations of their radius. Small
hydrophobic chains (oil) are added in the hydrophobic layer of the membrane prefer-
entially go to the lower and upper ends of the stalk, where the membrane is slightly
indented and the hydrophobic tails stretch to uniformly fill the space, and relax the
total tension. Linear stalks formed by more asymmetric lipids are stable and span the
simulation box over the periodic boundary conditions and we calculate their stiffness.
We compare the thickness profile and the bilayer repulsion with different models and
experimental data. To compare the solvent-free model with the explicit solvent mod-
els and experiments we change the head group interactions to mimic the hydration
repulsion between the membranes. We estimate the bilayer repulsion depending on
the hydration and lateral tension.

5.1 introduction

The adhesion and fusion between bilayer membranes gives rise to the mixing of lipids
between the neighboring leaflets [Markvoort and Marrink (2011); Stiasny and Heinz
(2004); Kozlovsky et al. (2004)]. This process involves the building of a lipid bridge,
called stalk, where the lipids of the two opposed leaflets mix with each other.
The shape, the free-energy cost and stability and the mechanical properties of the

stalk strongly depend on the lipid composition. We identify two lipid architectures that
correspond to the inverted hexagonal or lamellar phase in the self-assembled aggregates
(see fig:4.2). The second architecture has just one bead more in the head-group, this
suggest us to call the first lipid type PE and the second PC recalling the different head-
groups of the lipid membranes that correspond to the same self-assembled phases.
To create a stalk we prepare two opposed bilayers and induce a stalk using a cylindrical
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harmonic potential:Uext external harmonic potential,

(xext, yext) is the position of
external potential, ε is the energy

prefactor. Uext =
N∑
i

ε
(
(xi − xext)2 + (yi − yext)2

)
(5.1)

In case of PE lipid membranes the stalk, after eliminating the external potential,
elongates linearly until the two opposed caps fuse together and the stalk expands
along the whole box length (see fig:5.3). In case of a PC lipid membrane the stalk
preserves the circular shape induced by the external field (see fig:5.4).
We develop two methods to describe the two stalk morphologies making use of the

particular symmetry of the two stalks. In the case of PE membranes we study shape
fluctuations reconstructing the linear shape of the stalk. In the case of PC membranes
we construct the torus that at best envelop the hour glass shape of the stalk. The
position of the center of mass of the stalk and shape fluctuations give us important
information about the diffusion and the stiffness of the stalk.
We calculate the thickness profile in different models and compare the characteristic

sizes of the stalk with the experiment. We associate profiles with similar hydration
level that we quantify by the width of the water layer. In a solvent-free model the
hydration level is represented by rescaling the virial coefficient of the head-group in-
teractions, vBB . This virial coefficient changes effectively the interaction with the
implicit water molecules and hence the hydration between the two bilayers. We show
how the hydration layer works as parameter for the transition between the lamellar to
the inverted hexagonal phase in experiments, explicit and implicit solvent models.
We quantify the energy change connected with the variation of vBB studying the

bilayer repulsion between the two leaflets [Leikin et al. (1993); Rand and Parsegian
(1989); Kozlov et al. (1994); McIntosh and S.A.Simon (1994); Rand et al. (1988)].We
use the same method to calculate the bilayer repulsion between membrane with dif-
ferent lateral tensions.
Between two opposed membranes stalk and pore formation are two competing pro-

cesses that depend on the lateral tension and hydration. We observe that in the case
of stalk formation preceding the pore formation the two bilayers fuse.

5.2 Martini simulations

The Martini simulations were performed with the GROMACS software package, ver-
sion 3.3.2 [van der Spoel et al. (2005)]. The systems considered in this work were
studied under periodic boundary conditions using the Martini coarse-grained model
[Marrink et al. (2007)]. The coarse-graining procedure lumps four water molecules into
one coarse-grained bead and the atomistic lipid into the coarse-grained representation
of the picture (see fig: 5.1). Covalent bonds of lipids are modeled by springs, and the
stiffness of the lipid tails is provided by angle potentials.

Figure 5.1: Coarse-grained
representation of the Martini
force field for POPC lipids and
water molecules. Color code:
red is oxygen, cyan is carbon,
white is hydrogen in water and
double bond in coarse-grained,
green is glycerol backbone, blue
is nitrogen, and tan is
phosphorus. The polarity of the groups is modeled by effective Lennard-Jones parameters. Lennard-

Jones interactions are truncated at 1.2[nm].The zwitterionic character of the lipid
molecules is modeled by charges on the choline and phosphate groups. A 1.2[nm]
cut-off was used for the neighbor list, which is updated every 10 time steps. The
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effective time step used was 160[fs] (the effective time scale is defined via diffusion
of lipid molecules [Marrink et al. (2007)]). Simulations were conducted at 300[K]
in the NP⊥P‖T ensemble by coupling the lipids and the water separately to a heat
bath using a Berendsen thermostat [Berendsen et al. (1984)] with a relaxation time of
0.4[ps]. The normal and lateral dimensions to the bilayer were scaled independently
to maintain a pressure of 1[bar] in each direction, corresponding to zero tension using
a Berendsen barostat [Berendsen et al. (1984)] with a relaxation time of 0.8[ps].
The Martini simulations described in this chapter were performed by my colleague

Yuliya Smirnova.

5.3 simulation details

In the following chapter three different models are used.
DFT: The first model is the solvent-free coarse-grained model introduced in the first

two chapters of this thesis that we call in short DFT (from density functional theory).
The soft solvent-free simulations are run in the NPtT ensemble, the system contains

4300 chains divided in two bilayers separated by a short distance. At the initial stage
of the simulation an external cylindrical field induce locally the lipid mixing between
the membranes. The equilibrating transient is excluded from the further analysis.

Figure 5.2: Representation of
a PE (lhs) and a PC (middle)
lipid type for the DFT model.
Parametrisation of the Martini
force field into diblock lipids
(rhs). The phosphate group is
assigned to the hydrophilic
block of the lipid.

Martini: The second model is the Martini 2.0 force field [Marrink et al. (2007)]. The
simulations were performed in NPT ensemble with T = 300[K] and P = 1[bar]. All
systems are composed by two POPC bilayers, each containing 512 lipids. Each small
system was simulated for 1.2[µ]s and each large system for 2.4[µ]s.
Polymeric: The third model uses an explicit solvent and describes long and flexible

chains (like polymers) [Müller et al. (2003)]. Each bilayer contains about 8500 chains,
the polymers are described by 32 beads, 10 of them are hydrophilic. The unit length
is expressed in end-to-end distance of the chains and the system size is: (6, 6, 8)[Re].
For each analysis the system is equilibrated simulated for some period of time to

obtain at least 500 snapshots.

5.4 building a stalk

We use two different lipid architectures to reproduce the lamellar (PC head groups of
the lipids) and the inverted hexagonal phase (PE head groups of the lipids).

Figure 5.3: lhs) side view of
a linear stalk, rhs) top view of
a linear stalk. In red are drawn
the directive of the chains
(linear interpolation of the
bead positions) between 60o

and 120o degrees, in green the
others.

We induce the lipid mixing using an harmonic cylindrical potential to collect lipids in
a small region between the two membranes. After a short equilibration time the stalk
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acquires a linear (see fig:5.3) or circular (see fig:5.4) shape.
To describe the static and dynamic properties of the stalk we make use of the partic-

ular symmetry to reduce the dimensionality of the problem. We develop a method to
describe the line along the linear stalk and a method to describe the torus that fits at
best the hour-glass shape of the circular stalk (see next section).

Figure 5.4: lhs) side view of a
circular stalk, rhs) top view of
a circular stalk. In red are
drawn the directive of the
chains between 60o and 120o

degrees, in green the others.

5.5 shape reconstruction of a linear stalk

To calculate the shape of the linear stalk we perform the following steps.
We consider only the chains of the opposed leaflets. The conjunction point between

the chains is used to define the upper and lower surface by sampling the membrane
area on a large grid and by calculating the center of mass for each square. The surfaces
are successively smoothed by B-splines (see fig:5.5).

Figure 5.5: Top and side view
of the two midplanes (in green)
which define the lower leaflet of
the upper membrane and the
upper leaflet of the lower
membrane. In blue are
represented the beads between
the two leaflets belonging to
chains oriented between 60o

and 120o degrees from the
normal.

The points between the two opposite midplanes (blue points in fig:5.5) are projected
on the xy-plane. To define the line that describes at best the large band in the middle
of the plot (see fig:5.7) we remove the influence of the points that are far away from
the center of the line.
The procedure is the following:

• The first approximation line is calculated binning the space in the x direction
with Nbin number of bins.

• The chains composing the stalk are mainly perpendicular to the lipids sitting in
the bilayer. To enhance their contribution in the average we calculate the average

center of mass weighting the point with the following weight wi = 1−
(
αi−π/2

2

)2

where αi is the angle of the corresponding chain with the normal.

• We smooth the calculated line interpolating with B-splines do induce correlation
between neighboring bins.

54



position and size of a circular stalk
CHAPTER 5. STALK DYNAMICS

AND MORPHOLOGY

Figure 5.6: The green points
represent the beads between
the opposed midplanes. The
lines represent the sequence of
iterations to reconstruct the
final shape of the linear stalk.

• To reduce the high frequency fluctuations we recalculate the average position of

the bin by weighting with respect to the former line position. wi = 1−
(
yi−y−1

i

Ly/2

)2

where yi is the particle position and y−1
i is the former position correspondent to

the same bin i.

• We smooth again.

We apply this procedure six times to remove long jumps between two consecutive
points.

5.6 position and size of a circular stalk

The radial profiles are extremely sensitive to the determination of the center consid-
ering the small size of the stalk radius. The stalk is composed by a handful of lipids,
about 1% of the total, and diffuses over the box size. To identify the position of the
center and to follow the diffusion of the stalk we had therefore to develop an ad hoc
method.

Figure 5.7: lhs) Sketch of a
torus embedding a stalk. rhs)
Definition of the characteristics
of a torus, the normal and
lateral radii: rtor, htor.

To trace the position we have build a torus (see fig:5.7) described by the following
squared distance function d2(xi): d2(xi) is the squared distance

between the bead i and the
surface of the torus, xi, yi, zi
position of the bead i, xtor
position of the center of the torus,
rtor lateral radius of the torus,
htor height of the torus.

d2(xi) = |(rtor −∆ri)2 − h2
tor + (zi − ztor)2|

∆ri :=
√

(xi − xtor)2 + (yi − ytor)2 (5.2)

The torus is repulsive to the hydrophobic beads, attractive to the hydrophilic, has a
energy gain for small lateral radius htor and an energy loss for small normal radius
rtor.
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Figure 5.8: I) Projection on a
plane of the hydrophilic (blue)
and hydrophobic (green) beads
inside the torus. II) We count
how many grid sites are
occupied by hydrophobic beads
(number of red dots). III) we
update the position and the
radius of the stalk calculating
the center of mass and the area
occupied by the red dots.

The prefactors εA, εB , εlat, εnorm control the energy gain. The energy of the stalk/torus
interaction is defined as:

Etor =
N∑
i

εα(i)d2(xi) + εlat(rtor − rmintor )2 + εnorm(htor − hmintor )2 (5.3)

α = {A,B}

εα(i) :=


εA if type(i) = A
εB if type(i) = B

For finding the optimal position and size of the torus we perform different moves, m,
by changing the lateral radius, rtor, the normal radius, htor, and the torus position
(xtor, ytor, ztor). We have chosen as parameters: εA = 8000, εB = −50, εlat = 700,
εnorm = 70, hmintor = 0.6, rmintor = 0.1. For each move we recalculate the energy of the
stalk/torus interaction and we use a Metropolis like acceptance criterion to accept or
decline the move:

acc(m→ m′) = min
(

1, e(Eoldtor−E
new
tor )

)
(5.4)

After tens of iterations the new position and size of the torus is set. To refine the
definition of the torus we count how many beads are contained inside the torus. We
sample the area inside the torus using a lattice of 36 × 36 sites and count how many
of the sites are occupied by hydrophobic beads. We calculate the area, Ator, by the
fraction of occupied sites (red dots in picture:5.8) and use it to define the new radius
of the torus rtor =

√
Ator/π and calculate the center of mass of the beads in that area

to update the position of the torus. The last size and position of the torus is used
as starting configuration for the next snapshot. Averaging over all configurations we
measure an average number of 27 lipids involved in the definition of the stalk size.
From the evolution of the position of the stalk we calculate the mean square displace-

ment (see eq:4.2) and measure the diffusivity of the stalk about one third of the lipid
diffusivity Dstalk ' Dlipid/3.

5.7 line tension of the stalk

In this section we calculate the line tension of a linear stalk.
The Hamiltonian of the shape deformation for a linear stalk is:λ line tension and kben bending

rigidity of the linear stalk.

H =
1
2

∫ Lx

0

dx
(
λ(∇y(x))2 + kben(∇2y(x))2

)
−Lxλ F = − ln

∫
D[y(x)]dxe−H(y(x))

(5.5)
The thermodynamic tension, Λ, is the energy of the stalk per unit length:

Λ =
F

Lx
= − 1

Lx
ln
∫
D[y(x)]e−H(y(x)) (5.6)

Similarly to the calculation performed in (see eq:4.26) we obtain the following power
spectrum:qx(n) := 2πn/(NbinLx), Nbin

number of bins.
〈ŷ(qx)2〉L2

x =
1

kbenq4
x + λq2

x

(5.7)

that we use to fit the data and extract the stiffness, λ, and the bending rigidity, kben,
of the linear stalk (see fig:5.7). The presence of the cholesterol reduces the bending
rigidity of the stalk as the bending rigidity of the membrane as already calculated in
the previous chapter (see table:4.5).
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Figure 5.9: The power
spectrum of the line
fluctuations and the linear fits.

Table 5.1: Values of the
stiffens, kstiff , of the circular
stalk for DFT and Martini
with and without the presence
of oil.

kben λ kben λ

PE 64.5 -14.0 PE+chol 56.0 -8.8

[kBT∆L] [kBT/∆L] [kBT∆L] [kBT/∆L]

5.8 rigidity of the stalk

In case of a circular stalk we measure the radius fluctuations of the embedding torus.

Figure 5.10: Parabolic
approximation of the stiffens of
the stalk from the fluctuation
of its radius for the soft
solvent-free (lhs) and the
Martini models (rhs).

Due to the softness of our model we calculate the probability distribution of the stalk
radius and define the rigidity of a linear stalk using the equation:

P (r) =
∫

drNe−H(rN )δ(rtor − r) F = − lnP (r) =:
1
2
krig(r − req)2 (5.8)

where we have used the harmonic approximation to fit the data (see fig:5.10). We

Table 5.2: Values of the
rigidity, krig, of the circular
stalk for DFT and Martini
with and without the presence
of oil.

DFT DFT+oil Martini Martini+oil

krig 1.6 2.3 13 15 [kBT/nm2]
rmin 2.61 3.21 2.53 2.77 [nm]

observe that the presence of the oil expands the radius of the stalk and increases its
rigidity. The detailed discussion on the oil partitioning inside the stalk is developed in
the seventh chapter of this thesis.
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5.9 density profile

The determination of the center of the stalk allows us to calculate the radial density
profiles.

Figure 5.11: Thickness profile
of a stalk: lhs) in green the
density of the hydrophobic
beads, in blue the density of
the hydrophilic. rhs) the
characteristic sizes of the stalk
are the trunk, dt, the
indentation, di, the hydration
layer, dw.

The structure of the stalk is schematized in the cartoon of the figure (5.11). From
the density profile we can extract the characteristic sizes of the stalk that depend
on the membrane composition or on the hydration. The characteristic sizes are the
trunk, dt, the indentation, di, and the hydration layer thickness, dw [Aeffner et al.
(2009)]. We compare stalk structures obtained from different simulation models and
the experiment [Aeffner et al. (2009)].
For each model we have used the method described above to calculate the center of

mass of the stalk, which is needed for the calculation of the density profiles. In the ex-
periment the stalk structure obtained from the electron density profile, the maximum
of the density corresponds to the phosphate group of a lipid molecule. The charac-
teristic sizes are calculated measuring the distances between isolines corresponding to
half maximum of the hydrophobic density.
All lengths are rescaled by the membrane thickness for the comparison as defined in

the previous chapter (see fig:4.4).

Figure 5.12: Radial density
profiles obtained from I)
experiment Aeffner et al.
(2009), II) Martini, III)
polymeric, and IV) DFT
simulations.

To point out the universality of these structures we compare in the table the charac-
teristic ratios of the stalk for different hydrations (see fig:5.3).
The definition of hydration depends on the model and on the experimental set-ups. In

the experimental case the hydration is controlled by the vapor pressure (RH: relative
humidity) of the surrounding solvent [Aeffner et al. (2009)], for explicit solvent models
it is controlled by the water layer dw, and for implicit solvent models by the head group
interactions. To compare stalk structures from different models and experiments we
refer to the thickness of water layer, dw, as the positions of the half maximum of the
hydrophobic density (see fig:4.4) and compare the different structure by this quantity.
From the table (see table:5.3) we can draw the following conclusions. The hydra-

tion level has a large effect on the stalk indentation, di, and in the ratio di/dt,
both in Martini simulations and experiments. In Martini simulations the stalk is at
5Nw/Nl, dw = 2.04[nm] not circular and largely elongates. At 8Nw/Nl, dw = 4.16[nm]
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Table 5.3: Characteristic
ratios of the stalk in different
models and experimental
conditions. Nw/Nl is the
number of water molecules
between the two bilayers
divided by the total number of
lipids, RH is the relative
humidity.

dw di/db dt/db dw/db

2.04 Martini @5Nw/Nl 2.1 0.95 0.67
2.11 Martini @6Nw/Nl 2.2 0.78 0.70
2.24 Martini @7Nw/Nl 2.3 0.74 0.73
3.33 exp @RH = 34% (DPhPC) 2.3 0.9 0.68
3.88 exp @RH = 78% (DOPC) 2.1 0.91 0.73
2.12 solvent-free @vBB = −1.0 2.13 1.13 0.60
2.75 solvent-free @vBB = −0.5 2.33 1.08 0.78
4.08 solvent-free @vBB = −0.1 2.16 0.97 1.16
4.29 solvent-free @vBB = −0.1+oil 2.08 1.14 1.22

Polymeric 2.6 0.8 1.1

[nm]

the stalk is extremely thin, which indicates that the stalk structure is in 4[µs] sim-
ulations highly metastable for this hydration. At 9Nw/Nl the stalk disappears after
3.5[µs] via splayed lipid bond configuration.
Changing the level of hydration we are moving the membrane from the inverted hexag-

onal phase to the planar phase passing through the rhombohedral phase. The same
happens in the experiments and in the solvent-free simulations where changing the
parameter vBB from −1 to −0.5 we observe a transition from the inverted hexagonal
to the rhombohedral phase.
The identification of the exact hydration level for the phase transition is not a trivial

problem. Stable stalks correspond to the rhombohedral phase and their formation
corresponds to a free-energy gain with respect to the system of two isolated bilayers.
Similar calculations to determine the free-energy gain/loss in the formation of the stalk
were already performed in our group using the string method [Müller et al. (2012)] or
the lipid chemical potential difference [Norizoe et al. (2010)]. These simulations suggest
the regime for the parameter vBB for the inverted hexagonal/rombohedral/planar
phase transition.

5.10 stalk elongation

The decrease in hydration and the presence of oil have as effective result the elongation
of the stalk. To quantify the elongation of the stalk we calculate the acylindricity
which is defined as the relative difference between the first two principal moments of
the gyration tensor. The gyration tensor is defined as [Blavatska and Janke (2010);
Rudnick and Gaspari (1986); Theodorou and Suter (1985)]: d1, d2 = {x, y, z}.

Sd1d2 =
1

3N2
tor

Ntor∑
i

Ntor∑
j

(xd1i − x
d1
j )(xd2i − x

d2
j ) (5.9)

Where Ntor is the number of particles included in the torus and o(∆r, rtor) the occu-
pation function: ∆ri :=p

(xi − xtor)2 + (yi − ytor)2,
∆zi := |zi − ztor|.

Ntor =
N∑
i=1

o(∆ri, rtor)o(∆zi, htor) o(∆r, rtor) :=
{

1 if ∆r < rtor
0 otherwise (5.10)

In eq (5.9) we have labeled the particles inside the torus from 1 to Ntor to simplify
the notation.
Since the gyration tensor is a symmetric matrix we can diagonalize it:

S =

 λxx 0 0
0 λyy 0
0 0 λzz

 (5.11)
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Figure 5.13: lhs) Top view of
the particles contained inside
the torus at low hydration in
Martini simulations at
Nw/Nl = 5. rhs) Acylindricity
depending on the hydration
level and presence of oil chains,
hyd refers to Martini
simulations and the number to
Nw/Nl.

The acylindricity, acyl, is hence defined as:

acyl =
|λxx − λyy|
λxx + λyy

(5.12)

We have plotted the acylindricity for different systems and quantified the influence of
the hydration and the presence of oil on the expansion of the stalk (see fig:5.13). We
observe that both the oil and the reduction of hydration expands the stalk and we
suggest to use the acylindricity as order parameter for the phase transition between
the planar and the inverted hexagonal phase.

5.11 bilayer repulsion

The interactions between the missing water molecules and the head groups of the
lipids is characterized in the parameter vBB , which influences the depletion and the
hydration force between two opposed membranes.

Figure 5.14: Free energy
versus bilayer distance. The
decay length of the hydration
repulsion is calculated from the
exponential fit and depends on
the choice of the hydrophilic
virial coefficient vBB (lhs) or
on the lateral tension (rhs).

We have simulated two opposed bilayers composed by 3737 lipids each in NPtT
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ensemble where we have kept fixed the normal direction: Lz = 14[∆L]. The space is
optimized to allow enough separation between the two bilayers (zero interactions) and
to sample the total length of the simulation box. The intermembrane repulsion includes
many different contributions: the membrane fluctuations, the depletion forces, and the
enthalpic energy of the water/head groups interactions [Leikin et al. (1993); Berkowitz
and Raghavan (1994)]. In an coarse-grained implicit solvent model we can not correctly
reproduce the complex interactions between the polar water and the head groups of
the lipids but we can investigate the dependence of the repulsion energy on the lipid
compositions, the boundary conditions and the hydration level. The comparisons with
experiments and simulations is hence important to point out which contributions are
fundamental in the calculation of the repulsion energy.
Thanks to the large scale of the system calculated, the absence of solvent and the soft-

ness of the interactions we sample the free energy landscape by thermal fluctuations.
In particular, the solvent-free model does not face difficulties related to equilibrating
the solvent between the opposed bilayers with the surroundings.
We calculate the probability distribution of finding the membranes at a certain bilayer

separation, dbil, which is the distance between the head groups of the two facing leaflets
of the two bilayers.

Table 5.4: Decay lengths and
energetic prefactors from the
interpolation of the free energy
of the bilayer repulsion at small
intermembrane distances. The
upper block represents bilayer
composed by single tail lipids
with 8 hydrophobic and 2
hydrophilic beads. In this
block it is shown the
dependence of the bilayer
repulsion on the virial
coefficient vBB and lateral
tension. In the lower block it is
shown the dependence of the
bilayer repulsion on the lipid
composition.

vBB d0 E0/A (a− ā)/ā d0 E0/A

vBB = 0.1 0.49 0.75 −6% 0.38 0.43
vBB = 0.01 0.45 0.84 0% 0.49 0.75
vBB = −0.1 0.65 0.58 +6% 0.68 0.49
vBB = −0.5 0.85 0.36 +15% 0.33 0.91

composition d0 E0/A composition d0 E0/A

PC 0.65 0.65 PE 0.71 0.55
PC+oil 0.70 0.52 PC+chol 0.68 0.39

[∆L] [kBT/∆L2] [∆L] [kBT/∆L2]

The ensemble distribution of the intermembrane distance is calculated recovering
the dependence of the energy F by the bilayer separation dbil: The intermembrane
distance is calculated either between the upper leaflet of the bottom bilayer and the
lower leaflet of the top bilayer or between the upper leaflet of the top bilayer and the
lower leaflet of the bottom bilayer considering the periodic image convection. Only
the shorter distance among the two is chosen. zcm1 − zcm2 distance between the

center of mass of the chains of the
two facing leaflets, d0 decay
length of the intermembrane
repulsion, E0 energetic prefactor.

P (dbil) =
∫

drNe−H(rN )δ(dbil − (zcm1 − zcm2 ))

Fbil(dbil) = − lnP (dbil) = E0e
− dbild0

We have calculated the position of the upper monolayer of the lower membrane, zcm1 ,
and the position of the lower monolayer of the upper membrane, zcm2 , calculating the
center of mass of the chains contained in the respective monolayer. To improve the
sampling we have divided the membrane in 6 × 6 patches, this patch size furnishes a
stable definition of the monolayer height (the average is over tens of chains) and shows
more fluctuations. The energetic values obtained from the probability distribution of
the bilayer distance are then divided by the patch area.
From the data in the table (see table:5.4) we conclude that the virial coefficient vBB is

a control parameter for the hydration forces between two opposed bilayers. Decreasing
vBB we observe that the repulsion energy, E0/A, decreases and the decay length, d0,
increases (the membrane are more likely to stay closer). We therefore see that vBB as
a direct influence on the repulsion energy.
Changing the lateral tension we control as well the repulsion energy between the

bilayers. Looking at the table (see table:5.4) we realize that the behaviour is not the
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Figure 5.15: Density plot of
the stalk at different
hydrations. The change of the
hydrophilic virial coefficient
(lhs) vBB = −0.1, rhs)
vBB = −0.5) changes
equilibrium separation between
the two leaflets. one expected, the bilayer repulsion does not decrease upon lateral stretching. We

should consider that the total free energy is:

Fbil(dbil,∆a) = Frep(dbil) + Fcom(∆a) = Frep(dbil) +
kcom

2
(a− ā)2

ā2
(5.13)

Applying this correction we obtain:

• (d0 = 0.73, Eo/A = 0.48)@ + 15%

• (d0 = 0.74, Eo/A = 0.51)@− 6%

• (d0 = 0.68, Eo/A = 0.53)@ + 6%

and we see that the tension differences reduce the bilayer repulsion. If we shrink the
membrane area (+6%) the protrusions increase the probability of a contact between
the opposed bilayers and the patch-based definition of the intermembrane distance is
in this case not consistent.

Figure 5.16: Cross section of
a fusion process between two
membranes at low hydration
(vBB = −0.8, (a− ā)/a = 15%).
A stalk is initially created
between the two opposed
bilayers (lhs). A pore is created
in the lower bilayer and the
stalk expand radially around it
(rhs). The fusion pore has been
formed after the creation of a
pore on the upper bilayer
(bottom). The violet surface
represents the isoline of the
density of hydrophobic beads.
The figures represent an
average over six snapshots.

Referring to the literature we compare the calculated decay lengths with the values
presented in the literature. Specifically we address to the decay length, d0, for a POPC
lipid system is for Martini simulations d0 = 0.26[nm] [Smirnova (2012)] and for ex-
periment d0 = 0.22[nm] [Aeffner et al. (2009)] which compared to the values of the
plot (see fig:5.14) suggest us to set vBB = 0.1 for the comparison with the experi-
ments. Between two opposed membranes we observe adhesion and lipid mixing at low
hydrations. Controlling the lateral tension of the simulation box we have observed a
fusion event steered from a stalk formation between two bilayers (see fig:5.16). After
the formation of the stalk a pore is created at its lower end. The pore successively
expands pulled by the lateral tension. Successively another pore is created in the op-
posite bilayer and the stalk start elongating sealing the rims of the two pores together.
The last picture of figure (5.16) shows the completed fusion between the two opposed
bilayers.

5.12 conclusions

We have shown that with our model we are able to create PC and PE lipid types,
and we have developed two methods to describe the position and size fluctuations of
circular and linear stalks. From the size fluctuations we could calculate the stiffness
of the linear and circular stalk for different lipid compositions. We observe that the
addition of oil chains expands the stalk trunk but does not influence the indentation
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on the lower and upper end. We have compared the solvent-free model with explicit
solvent model and we study how the head-group interactions can mimic the hydration
between the bilayer. We quantify how bilayer repulsion changes under hydration and
lateral tension.
Controlling the hydration level in different models we have identified a transition be-

tween inverted hexagonal/rombohedral/lamellar phases. Between two opposed mem-
branes under lateral tension, pore and stalk formation are competing phenomena. The
hydration between the two bilayers enhance the stalk formation as initial stage of the
fusion process. We have observed that already by a 15% area increase and a virial
coefficient of vBB < −0.8 the stalk formation was preferred to the pore formation and
consequent rupturing of both membrane.
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Chapter 6

inclusion interactions

Transmembrane peptides locally induce important membrane modifications that might
have as extreme effect the stabilization of pores in tensionless membranes and cause
the cell’s death (apoptosis). These processes are collective phenomena that we study
by solvent-free coarse grained models.
Based on the hydrophobic mismatch and the surface energy of the peptide we identify

the contact angle between the peptide and the membrane. For a fixed contact angle and
hydrophobic mismatch the thickness profile shows an under-/over-shoot compensated
by an over-/under-shoot above or below the bulk thickness. The lipid-mediated inter-
actions between two peptides are quantified by placing the peptides at fixed distances
and calculating the thickness profile on the line connecting the two peptides. From
the thickness profile we extract the interpeptide distance where the thinning reaches
its maximum. We study the superposition of the effects in the thickness profile for
inclusions sitting at the vertices of regular polygons. To explore the large parameter
space we compare the results of the simulations with the numerical solution of the
Helfrich Hamiltonian of two coupled elastic sheets.
The particle-based simulations allows us to study the modifications of the chain con-

formation and we show the radial profiles of notable chain modifications. From those
radial profiles we notice that beyond the enrichment zone, the average density is slightly
lower than the bulk one, the mean separation of the lipids is larger and the membrane
is prone to pore formation.

6.1 minimal models for thinning of lipid membranes
by transmembrane proteins

Fluid membranes are mechanically extremely resistant and function as a barrier be-
tween the cytosol and the extracellular liquid [Seifert et al. (1991); Miao et al. (1991,
1994); Kocun et al. (2011, 2010)]. The transport of compounds inside and outside the
cell is regulated by a leakage mechanism of transmembrane proteins. These proteins
are mainly composed by a sequence of aminoacids ordered in α-helices or β-sheets.
Some of the residues composing the peptide may be apolar and sit in contact with the
head groups of the lipids and orient the axis of the protein normal to the bilayer plane
[Luckey (2008)]. With the term protein we want to describe a large class of trans-
membrane inclusions (or gramicidin channel [Helfrich and Jakobsson (1990b); Huang
(1986a); Harroun et al. (1999); Helfrich and Jakobsson (1990a)]) that perturb the sur-
rounding membrane. The perturbation induced by a single locally protein weakens
the mechanical resistance of the membrane and the combined effect of many proteins
can stabilize a pore. We distinguish between double-sided proteins (one side is hy-
drophilic) that stabilize barrel stave pores (the proteins sit at the rim) and single
sided proteins that stabilize toroidal pores (the proteins do not form the pore rim)
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[Yang et al. (2001)]. Double-sided peptides (like magainin, melittin or influenza virus
peptides) form spontaneously bundles inside the membrane and can stabilize a barrel
stave pore [Risselada et al. (2012); Illya and Deserno (2008)].
The stabilization of a pore is a collective phenomenon where the transmembrane pro-

teins do not directly interact between themselves but induce a long-range modification
of the lipids [Goulian et al. (1993); Kim et al. (1998); Prost and Bruinsma (1996)].
The protein membrane interactions are a well studied topic in theory [Huang (1986b);
Helfrich and Jakobsson (1990a); Partenskii and Jordan (2002); Nielsen et al. (1998);
Marčelja (1976)], in experiments [Leikin et al. (1994); Leikin and Parsegian (1994);
Leikin et al. (1995)] and simulations [May (2002); West et al. (2009); Niemelä et al.
(2010); Venturoli et al. (2006, 2005); Reister and Seifert (2005); Sintes and Baumgärt-
ner (1997); Fattal and Ben-Shaul (1993)]. On the other hand the superposition of the
effect of the single protein is not well studied [Schmidt et al. (2008); Aranda-Espinoza
et al. (1996); Harroun et al. (1999)] and should largely deviate from the linear response
theory. To this end, we work towards studying the local perturbation in the macro-
scopic (thickness and density) and in the microscopic (chain diffusivity, stretching and
orientation) scales for single peptides. We investigate the combined effect analyzing
the interpeptide distance where the weakening of the membrane reaches its maximum.
We analyze the combined effect of peptides by constructing a cluster of peptides po-
sitioned on the vertices of regular polygons distant from the center by the weakening
distance. We observe that clusters with at least five proteins leads to the stabilization
of pores.
The parameter space to explore the problem of superposition is large as it consid-

ers three parameters for each inclusion (radius, hydrophobic mismatch and surface
energy), the number or peptides, and the distance between them. We present a con-
tinuum model and explore its solutions with the results of the simulation to speed
up the computation by a factor of ten thousand allowing us a fine exploration of the
parameter space. We show the compatibility and the break down of this mapping in
case of the pore stabilization.

6.2 soft description

A detailed modeling of the inclusion is done by connecting a cluster of monomers by
harmonic springs (see fig:6.1). This description eases the definition of different patterns
and shapes (useful for the stabilization of barrel stave pores).

Figure 6.1: lhs) Sketch of a
cluster of tethered monomers,
rhs) surface energy of the
peptide depending on the
number of beads. We choose
the number of beads per area
marked by the red circle,
Nb/A = 38.

The surface energy of the cluster is connected with the number of monomers describing
the cylinder and the fluctuation of the shape with the strength of the harmonic springs
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connecting the beads. rij is the distance of the tether
between the particle i and the
particle j, r̄ij is the equilibrium
distance of the tether, ksp elastic
coupling between the monomers
in the chains.

Uij = 200ksp(rij − r̄ij)2 (6.1)

The protein is composed by coaxial rings of monomers connected by harmonic springs
(see fig:6.1), the odd rings have a 10% increase in the radius to improve the resistance
to lateral compression. We connect only neighboring beads, each bead is connected
with the two neighboring beads on the lateral direction and the two on the normal
direction. The strength of the harmonic potential controls the shape fluctuations of
the peptide and we set the prefactor to 200ksp to conserve the cylindrical shape under
the pressure of the lipids. The axis of the soft inclusion is obtained interpolating all
positions of the monomers.

6.3 parameter space

The parameter space we are considering consists in the hydrophobic mismatch, radius
and surface energy for every peptide, an additional degree of freedom is the interpep-
tide distance and the number of peptides sitting at the vertices of regular polygons:
(rpep, hpep, εpep, rIIpep, Npep).
Depending on the hydrophobic mismatch and on the lateral radius of the peptide the

protein may fluctuate around an orientation angle tilted with respect to the normal.
To calculate the profile we position first the inclusion in the center of the frame and
rotate the system so that the peptide’s orientation axis lies on the plane (x, z).
If the peptide is tilted we loose the radial symmetry since the we can not project

the bead positions neither on the normal direction nor on the peptide’s axis without
giving a distorted representation of the membrane. Moreover, the tilting angle adds an
additional degree of freedom that we want to neglect in exploring the large parameter
space we are considering.
In the soft description we add an external harmonic potential oriented normally to

the surface of the membrane and recover the radial symmetry:

Uext(ri/pep; rpep) := 200ksp(ri/pep−rpep)2 r2
i/pep := (xi−xpep)2+(yi−ypep)2 (6.2)

No constrain is used on the normal direction. The external potential is meant as well
to be used as umbrella potential to calculate the potential mean force between two
peptides.
Above a certain value of the hydrophobic mismatch and the surface energy the mem-

brane bulges around the peptide and perturbs the radial profiles. The profiles we
present are below this threshold.

6.4 continuum model

Since the solution of a differential equation on the lattice is about ten thousand times
faster than a single simulation we compare the results obtained with the solution of
the elastic model to be able to explore the large parameter space.
We refer to the continuum model for bilayer membranes defined by [West et al. (2009);

Branningan and Brown (2006, 2007)] where the membrane is described as two thick
coupled elastic sheets. Each elastic sheet has an energy cost for bending and stretching
and the elastic coupling is described as an harmonic potential. The free energy of the
model is: kben is the bending rigidity, γ′

controls the asymmetry between
the bilayer (it is connected with
the spontaneous curvature, kel
the elastic coupling.

F =
1
2

∫
dxdy

(
kben(∇2ds(x, y))2 + 4kbenc0∇2ds(x, y) + 4

kel
d̄2
d2(x, y)

+ γ′ds(x, y)∇2ds(x, y)
)

(6.3)
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The term γ′ is connected with the spontaneous curvature, c0, with this relationship
[Branningan and Brown (2006)]:

γ′ := 4kben

(
c0 −

∂c0
∂A

A

)
(6.4)

The Hamiltonian (eq:6.3) recalls the Hamiltonian already introduced in (eq:4.32) where
we have excluded the protrusion contributions (dependent on the coupling terms γλ,
kλ) that can not be described in continuum models. In (4.32) we have defined h(x, y)
as the height of the membrane at the point (x, y) and d(x, y) as the thickness of the
membrane at the same point. We have changed the coordinate system and disregarded
the fluctuations over the average h(x, y). In (6.3) we consider ds(x, y) as the position
of the intersection between the hydrophobic and the hydrophilic beads of the upper
leaflet (the lower leaflets is symmetric to the upper one). The transformation between
d(x, y) and ds(x, y) is simply:

ds(x, y) = d(x, y)− d̄ (6.5)

This simple change allows us to describe the membrane modification by a single func-
tion, ds(x, y), and ds(x, y) = 0 corresponds to the ground state of the energy (6.3).
Every modification of the surface ds(x, y) from the ground state gives a energetic
contribution in terms of bending, stretching and elastic coupling.

Figure 6.2: lhs) Sketch of the
numerical solution of the
Euler-Lagrange equations in
2d. The bonds represent the
connections between the lattice
points. The blue and red
points fix the boundary
conditions. The violet points
represent the thickness profile
calculated from the simulation
on the same grid discretisation
as the numerical solution.

Euler-Lagrange equations

We calculate the Euler-Lagrange equation from the free energy expressed in (see eq:6.3)
and obtain [West et al. (2009)]:

δF

δds
= 0 (kben∇4 + γ′∇2 + kel)ds(x, y) = 0 (6.6)

We solve the differential equation (eq:6.7) in different steps. We consider first the
Cartesian one dimensional problem.

Dxds(x) = 0 Dx := kben∇4
x + γ′∇2

x + kel ∇2
x :=

d2

dx2
(6.7)

To calculate the solution of the linear differential equation we search for a solution of
the kind exp(λx) and write the characteristic equation:λ±± are the roots of the

characteristic equation

kbenλ
4 + γ′λ2 + kel = 0 λ±± = ±

√
−γ′ ±

√
γ′2 − 2kbenkel
2kben

(6.8)

which gives the solution:

ds(x) = c1e
λ++x + c2e

−λ++x + c3e
λ+−x + c4e

−λ+−x (6.9)
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We see that the following boundary conditions:

ds(rp) = hp d′s(rp) = tanθc ds(Lx) = 0 d′s(Lx) = 0 (6.10)

are sufficient to determine the parameters ci.
Second we calculate the radial solution where the Laplacian operator turns into:

Drds(r) = 0 Dr := kben∇4
r + γ′∇2

r + kel ∇2
r :=

1
r
∂r(r∂r) (6.11)

The radial solution of the equation (6.7) is [West et al. (2009)]: ∇2
r = 1

r
∂r(r∂r) in cylindrical

coordinates, J0(r) and Y0(r) are
the 0th-order Bessel functions of
the first and second kind.

ds(r) = c1J0(λ++r) + c2Y0(λ++r) + c3J0(λ+−r) + c4Y0(λ+−r) (6.12)

where the λ coefficients are the same calculated for the one dimensional Cartesian
problem (eq:6.9) and we use the same boundary conditions (eq:6.10).
Third we define the differential operator in terms of partial derivatives in Cartesian

coordinates:

Dcds(x, y) = 0 Dc := kben∇4
c + γ′∇2

c + kel ∇2
c :=

(
∂2
x 0
0 ∂2

y

)
(6.13)

The solution of partial differential equations is a complex problem that uses the Lax-
Milgram theorem to show the existence and uniqueness of a weak solution to a given
boundary problem [Babuška (1971)]. To avoid the complexity of treating the mathe-
matical problem we test the solution of the discretized two dimensional problem with
the analytical radial solution. We create a two dimensional square lattice, we dis-
cretized the operators and we put the following boundary conditions:

{ds(x, y) = hp |x2 + y2 = rp} {d′s(x, y) = tanθc |x2 + y2 = rp}
{ds(x, y) = 0 |x = Lx ∨ y = Ly} {d′s(x, y) = 0 |x = Lx ∨ y = Ly} (6.14)

We calculate the numerical solution of the Euler-Lagrange equations for a square
lattice in two dimensions (see fig:6.2) using finite differences (see appendix).

Figure 6.3: lhs) thickness
profile in Cartesian
coordinates. rhs) comparison
between the thickness profiles.
The green and the purple lines
represent the radial average
from the Cartesian thickness
profiles form the simulations
(green line) and from the 2d
numerical solution of (eq:6.15)
(red line). The red line is
obtained by fitting with the
simulation data with the
function Ae−x/λ sin(fx)/x, the
blue line shows the numerical
solution in cylindrical
coordinates.

To map the parameter of the differential equation into the simulated system we rescale
the constants: (

∇4 +
γ′

kben
∇2 +

kel
kben

)
ds(x, y) = 0 (6.15)
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We refer to a lipid bilayer using the values calculated in the previous chapter (see
table:4.3) and use the following values:(

∇4 + 0.5∇2 + 0.57
)
ds(x, y) = 0 (6.16)

If the peptide sits in the middle of the lattice we recover radial symmetry around the
peptide center. We reduce the two dimensional solution into the radial one integrating
over the angle and we superimpose the two solutions on the same plot (see fig:6.3).
The thickness profile obtained from the simulations is the result of the radial average

of the density profile. We have rescaled the density profile by the ratio d̄/ρ̄ and shifted
the value of the bulk thickness, d̄, to the ground line:

d(r) = d̄

(
ρA(r)
ρ̄
− 1
)

(6.17)

The thickness profile obtained from the numerical calculation is the radial average
profile of the height of the grid points around the inclusion.
The agreement between the analytical solution, the reduced two dimensional solu-

tion and the thickness profile obtained from the simulations (see fig:6.3) furnishes a
satisfying argument about the reliability of the two dimensional solution.
We want to express the solution using a physical analogy with the damped harmonic

oscillator in far field approximation in cylindrical coordinates:A amplitude, ξ correlation length
and f the oscillation wave vector.

ds(r) = Ae−r/ξ
sin(fr)
r

(6.18)

Fitting the solution of the numerical calculation or the simulation we can extract
the correlation length and the oscillation wave vector of the protein lipid interaction:
ξ = 2.25[∆L] and f = 0.88[∆L−1] (see fig:6.3).

6.5 simulation description

We have created different hydrophobic inclusions in a cylindrical cavity created in
the membrane. The membrane patch simulated is at least [29∆L] per side to avoid
any boundary effect and the simulation time is over 500[ts]. For every simulation we
have ignored the equilibration steps and calculated the radial profiles described in the
following sections.

6.6 macroscopic scale

The first information we learn about the local modification around a transmembrane
protein is the change in the membrane thickness.

Figure 6.4: Radial density
profiles and the identification
of three different zones. lhs)
comparison between the
thickness profile obtained in
the simulation and the
calculated one. The green
region represents the density of
the hydrophobic beads, the
blue the density of the
hydrophilic, the brighter is the
color the denser is the region.

From the pictures (see fig:6.4) we can see that the positive hydrophobic mismatch of
the protein causes the membrane leaflets to separate until reaching the two borders
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of the protein defining a contact angle αcont at the hydrophobic/hydrophilic/inclusion
contact point. The thickness characteristics are:

rmin position of the minimum,
dmax maximum thinning, αcont
contact angle.

The thickness decreases towards its bulk value showing in some cases
an undershoot below the bulk value. In these cases we can define the characteristics
of the thickness profile, namely the contact angle αcont, the maximum thinning dmax
and the position of the minimum rmin. As in the simulated system we observe (see
fig:6.4) that after the decrease of the profile a dip is created and the thickness of the
membrane restores slowly to the equilibrium value, yellow line.

6.7 thickness characteristics

We have calculated the characteristics of the thickness profile depending on the pa-
rameters of the model (mainly: the radius, the hydrophobic mismatch and the surface
energy, see fig:6.5).

Figure 6.5: lhs) Density
profile around the soft inclusion
(the red square). rhs) Input
parameters of the simulated
inclusions and the resulting
position of the minimum,
thinning and contact angle.

rinc Nb/A hinc rmin dmax αcont

1.0 38 4.0 3.46 3.14 0.00
1.0 38 5.0 3.43 2.98 20.8
1.0 38 6.0 3.70 2.92 31.4
1.0 38 7.0 3.70 2.85 45.0
2.0 38 4.0 4.28 3.04 0.00
2.0 38 5.0 5.23 3.00 17.2
2.0 38 6.0 5.07 2.77 37.9
2.0 38 7.0 4.75 2.77 45.0

[∆L] [∆L−2] [∆L] [∆L] [∆L]

We obtain the radial thickness profile from the 2d (r, z) density profile performing a
weighted average over each z bin for the correspondent bin in the r direction. The
chosen weight, w(r, z), is the product of the density of the hydrophilic, ρA(r, z) and
the hydrophobic, ρB(r, z) in the space point (r, z): Nbin number of bins, zi thickness

profile correspondent to the bead
i, w(r, z) weighting function at
the point (r, z).ds(ri) =

∑Nbin
i zw(r, z)δ(r, ri)∑Nbin
i w(r, z)δ(r, ri)

w(r, z) := ρA(r, z)ρB(r, z) (6.19)

δ(r, ri) :=
{

1 if (i− 1)∆r < r < i∆r
0 if otherwise (6.20)

The resulting profile is the average between the one on the upper side minus the one
on the lower side.
In case of Cartesian symmetry the thickness is calculated from the density profile of

the hydrophobic beads: ρA(x, y), density of the

hydrophobic (species A) beads.
ds(x, y) =

d̄

ρ̄
ρA(x, y) (6.21)

Since the melt is almost incompressible both definitions of the thickness profile are
compatible.
To extract the contact angle we linearly interpolate the thickness profile close to the

border with the peptide. We extract the position of the minimum and the maximum
thinning interpolating with a parabola the thickness profile close to the local minimum.
The continuum model allows us to explore with an enhanced discretisation the influ-

ence on the membrane deformation by the model parameters. We create a protein of
radius 1[∆L] and varying the contact angle and the hydrophobic mismatch we solve
the Euler-Lagrange equations (eq:6.13) and extract the maximum thinning and the
position of the minimum. We have created 400 different configurations defining 20 dif-
ferent contact angles (between 0o and 70o) times 20 different hydrophobic mismatches
(between 0 and 4[∆L]). We have extracted the radial profiles from the numerical so-
lutions (see fig:6.3) to obtain rmin and dmax and create the isosurfaces (θc, hp, rmin)
and (θc, hp, dmax) plotted in the graph (6.6).
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Figure 6.6: Contour plot of
the position of the minimum
(lhs) and maximum thinning
(rhs) depending on the height
and contact angle.

The difference between the two plots in figure (6.6) shows an interesting difference
between the position of the minimum and the thinning. The hydrophobic mismatch
has a considerable influence on the thinning but not on the distance from the minimum
for small contact angle. For larger contact angles the role of the hydrophobic mismatch
in shifting the position of the minimum is enhanced.
This analysis allowed us to explore the complicated relationship between contact angle

and hydrophobic mismatch on the local membrane deformation in a fast calculation.

6.8 superposition of effects

To quantify the effect of the superposition of many peptides we calculate first the
dependence of the thinning by the interpeptide distance.

Figure 6.7: Thinning of the
membrane (lhs/top) and
position of the minimum
(rhs/top) versus interpeptide
distance obtained from the
simulation and the numerical
calculation. lhs/bottom)
Sketch of the numerical
solution, the two peptides are
represented by the boundary
conditions (blue points),
rhs/bottom) thickness profile
around the two inclusions (in
red).

We keep two inclusions at a fixed distance and calculate the thickness profile in a slab
d parallel to the line connecting the two peptides centers and as broad as the peptide
diameters (see fig:6.7, bottom right). We calculate the thickness profile from the 2d
density profile of the slab converting the density in thickness units. The thickness
profile is directly extracted from the continuum solution considering the grid points
on the line connecting the centers of the two peptides (see fig:6.7).
In the plot (see fig:6.7) we can identify the interpeptide distance where the thinning

has its maximum effect and we call it the weakening length of the protein-protein

72



multiple inclusions CHAPTER 6. INCLUSION INTERACTIONS

interaction dIImax.
Over a critical distance the combined effect of the peptides decouples and the thinning

profile shows two minima instead of one (see fig:6.7).
The effect of two separated peptides superimpose and the position of the minimum
rIImin differs from the characteristic rmin of the single inclusion.
The data collected from the simulations are less precise since the membrane bulges

around the peptides and the two peptides do not sit at the same height. The continuum
model allows a finer and more precise determination of the effect of superimposition
giving good qualitatively agreement.

6.9 multiple inclusions

We study the effect of the superposition of multiple peptides putting them on the
vertices of regular polygons where the distance between the vertex and the center is
the weakening length of the peptide.

Figure 6.8: Thickness
profiles of the angular sectors
around one inclusion and
correspondent sketch of the
division of those angular
sectors. The angular sectors
are: 0o < φ < 18o (green),
18o < φ < 36o (blue),
36o < φ < 54o (red),
54o < φ < 72o (orange),
72o < φ < 90o (yellow). The
columns refer respectively to
two, three, and four proteins
embedded in the membrane.

In the plot (see fig:6.8) we calculate first the 2d thickness profile on the lateral coor-
dinates, then we divide the profile in five different sectors with the same angular span
and calculate the linear thickness profile on that sector. Over 36o degrees the posi-
tion of the minimum and the thinning are indistinguishable, under 36o the thinning
increases and the position of the maximum thinning shifts further away.

Figure 6.9: Stable pore
between five transmembrane
proteins.

In the plot (see fig:6.10) we can observe a qualitative agreement between the simula-
tions and numerical solution. We show a contour plot of the membrane thickness in
Cartesian coordinates (see fig:6.10) where the cold colors (blue and violet) are under
the bulk thickness (white). The presence of the proteins is marked with the deep blue
and around their borders the thickness profiles is largely above the bulk thickness (in
the region marked by the warm colors: yellow, orange, and red). The effect of the
superimposition is mostly visible in the middle of the polygon. The stronger difference
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between the simulation results and the numerical calculation is at the exterior of the
polygon, the continuum model shows a larger thinning.

Figure 6.10: Thickness profile
around a cluster of 4 (top) and
5 (bottom) proteins obtained
from the simulations (lhs) or
from the continuum
calculations (rhs).

The regular square mesh is required for finite difference calculations but is not par-
ticularly suited for reproducing the boundary conditions and the circular edge of the
protein.
When the peptides sit at the vertices of a regular pentagon or hexagon we observe in

the simulations the formation of a stable pore in the center of the polygon (see fig:6.9).
After the formation, the pore is stable even without the constrain on the peptides

position (see eq:6.2).
In this case the solution of the continuum model can not show the pore formation.

A more accurate calculation of the continuum model would allow to parametrize the
thickness so that below a certain threshold value the continuum model could predict
pore formation under different peptide geometry.

6.10 microscopic scale

After having analyzed the local modification on the continuum level we look at the
discrete change in the lipid conformations with the respect of the bulk value.
We analyze the radial profiles of different quantities (mean angle, end-to-end distance,

mean separation...) and we point out the most relevant changes and characteristic
lengths. We calculate at the end the diffusivity of the proteins depending on their
description characteristics: (rpep, hpep, εpep).
Relevant chain conformation changes around the peptide are:

• end-to-end distance

• mean separation
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• mean orientation

• mean separation

For each quantity we compare the radial profiles in the different zones comparing the
characteristic lengths of the data plotted in the graph (see fig:6.11). The density of
chains is normalized by the volume of the portion considered while the other quantities
are normalized by the number of chains and hence uncorrelated from the densities.

Figure 6.11: Comparison
between the characteristic
length of the following radial
profiles of the chain
conformations: mean
separation, end-to-end
distance, density, normal
fluctuation.

end-to-end distance

In lipid membranes the fluid-gel transition shows a clear trace in the change of the
end-to-end distance. In our model we have measured the end-to-end distance of the
lipids in the gel phase: Rge = 2.44[∆L] and in the liquid phase Rle = 2.525[∆L]. The
end-to-end distance in the vicinity of the protein is larger than in the fluid phase. From
the plot (see fig:6.11) we can see that the lipids are stretched close to the inclusion’s
wall, they relax in correspondence of the first depletion peak of the density and they
are slightly compressed in the depletion region.

mean separation

To compute the mean separation of the lipids we perform a Delaunay triangulation
on the lipid position and calculate the radial area distribution of the triangles. A
similar technique is used to study lipid packing [Hömberg and Müller (2010)] or area
fluctuation [Shinoda and Okazi (1998)].
The Delaunay triangulation of a set of points (chain positions in this case) is a collec-

tion of edges where for each one we can find a circle containing the edge’s vertices but
no any other points. The radial profile of the mean separation is calculated obtaining
the area of every triangle and assing the center of the triangle to the correspondent
radial slab (see fig:6.12). In the graph (6.11) we see a clear decrease of the mean area
close to the surface of the peptide where the lipids are more packed. In the deple-
tion zone the mean separation between the lipids is larger showing a weakening of the
membrane.
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Figure 6.12: lhs) Delaunay
triangulation on the lateral
chain’s position, blue and red
lines distinguish between upper
and lower monolayer. rhs)
Sketch of a Delaunay
triangulation around the
peptide.

normal fluctuation

The normal fluctuation in the slab s is the standard deviation of the normal position
of the chains:

σz(s) :=
〈z2
c (s)〉 − 〈zc(s)〉2

Nc(s)
(6.22)

The chains fluctuate closer to the wall of the membrane and less in the depletion zone.

orientation angle fluctuation

Similar to the previous calculation we show the fluctuation of the orientation angle of
the chain:

σα(s) :=
〈α2
c(s)〉 − 〈αc(s)〉2

Nc(s)
(6.23)

The angular fluctuations are larger close to the peptide’s wall, no other significant
changes are visible.

6.11 conclusion

In this chapter we have used our coarse-grained solvent-free model to show how the
presence of the transmembrane proteins locally modifies the continuum and discrete
conformation of the membrane. The single effect of the protein superimpose for a
particular disposition of transmembrane protein. We have calculated the interaction
range between two proteins and quantified the identified the interpeptide distance
where the superposition of the effects reaches its maximum. This distance was used
to identify the ideal constellation of proteins to create a stable pore in a tensionless
state.
The same results were obtained solving a continuum model parametrized from the

analysis of the mechanical properties of a simulated membranes. The results of the
continuum model have shown a perfect comparison with the results of the simulations.
The numerical solution is many orders of magnitude faster than the simulations. This
allowed us to fine explore the parameter space and calculate the interaction range for
every protein description.
The stabilization of a pore is the break down of the continuum model, the membrane

in this description is a continuum sheet and the pore formation is a discontinuity in
the membrane. The pore stabilization could be parametrized setting a threshold value
of the thickness corresponding to the point where the pore is stable in the simulations.
We realize that the squared mesh used to describe the membrane is not flexible enough
to describe the deformation around many peptides. A different mesh would be required
around the peptide to represent the boundary conditions at the borders. The finite
differences only work for a regular mesh, where every grid point is equally distanced.
We suggest the extension of this calculation to finite element calculation to give a more
accurate solution.
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Chapter 7

line tension of the pore in
presence
of defectants

Bilayer membranes are essential in isolating the cytosol from the extracellular fluid.
The presence of a pore in membranes regulates communication between the inside
and outside of the cell, enhances the fusion process between two opposed membranes
[Risselada et al. (2012)] and can cause the cell’s death (apoptosis) [Horton and Kelly
(2009)]. Transient pores can spontaneously form and have been observed in giant
unilamellar vesicles [Karatekin et al. (2003a,b)]. A pore can be otherwise stabilized by
imposing a lateral pressure [Wang and Frenkel (2005)] or by transmembrane peptides
[Rzepiela et al. (2009)]. Peptide-stabilized pores are mainly distinguishable between
barrel-stave and toroidal pores. Coarse-grained models are particularly well-suited to
explore the size and shape evolution of pores and to estimate their line tension and
activation energy [Litster (1975); Farago and Santangelo (2005); Wohlert et al. (2006)].
In this study we investigate the role of hydrophobic peptides in changing the shape
and the activation barrier of a pore.
We observe that the effect of such proteins can be partially shielded by the addition of

hydrophobic chains (oil). The oil represent the molecules of dodecan which is usually
used as solvent in the preparation of synthetic membranes (pore spanned membrane
[Weiß and Enderlein (2012)]). The oil loses its configurational entropy and sits at the
interface with the peptide relaxing the tension and improving the stability. In order
to investigate lipid frustration inside the pore we add oil inside the membrane and
observe the region where the oil partitions. We study and compare this effect in pores,
proteins, and stalks.

7.1 pore-protein interactions

The discrete nature of the membrane (the lipids) allows the creation of temporary
pores, facilitating the passage of compounds through the membrane [Karatekin et al.
(2003a,b)]. The energy barrier against pore formation is extremely high, due to the
unfavourable interactions of the lipid tails with the solvent [Wang and Frenkel (2005);
Tolpekina et al. (2004); Ting et al. (2011)]. In order to create a stable pore, it is
necessary to exert a lateral tension on the membrane or to shield the lipid tails from
the contact with the polar solvent. The first case results in a toroidal pore (where the
lipid head groups turn around the pore rim, see the rhs figure in fig:7.1), in the second
case in a barrel stave pore (middle figure in fig:7.1,[Illya and Deserno (2008)]).
Amphiphilic peptides (melittin [Lin and Baumgaertner (2000); Yu et al. (2010); Yang

et al. (2001)], magainin, hemagglutinin peptides [Risselada et al. (2012)] and bax-
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derived peptides [Garćıa-Sáez et al. (2007)]) are short proteins where the polar residues
face in the opposite direction with respect to the apolar ones. The polar face is in
contact with the solvent and the apolar side is adsorbed to the hydrophobic moiety.
We study the conditions of stability of such a pore depending on the lipid architecture.

Figure 7.1: lhs) Snapshot
showing the equilibrium
position of the proteins around
a pore. middle) Sketch of a
barrel stave pore. rhs) Sketch
of the superposition of the
effect on the membrane
thinning between a pore and a
peptide. We have shown in the previous chapter that a particular disposition of transmembrane

peptides can stabilize a toroidal pore. In this chapter we want to quantify the single
contribution of a peptide on the pore shape and line tension. We create a stable
pore by simulating a lipid membrane in the NV T ensemble and we remove some lipids
from the center of the system and we embed a transmembrane protein in the proximity
of the pore rim. We study the mean protein/pore separation and pore acylindricity
depending on the hydrophobic mismatch of the peptide.
Additionally, we calculate the changes in line tension of a pore in the presence of a

peptide and compare the results with literature values [Garćıa-Sáez et al. (2007)]. We
notice that short hydrophobic chains (oil) added inside the membrane partition mainly
in the region close to the peptide and the rim of the pore. As macroscopical effect the
oil increases the line tension of the pore. To quantify the influence of the oil, we study
the radial profiles of the bond length and lateral pressure around the defect.

7.2 center, area and acylindricity of the pore

The shape of the pore is approximately circular and we develop the following interactive
method to find the radius of the pore and the deviation from the roundness.

Figure 7.2: Iterative process
to determine the center, the
position and the acylindricity
of the pore. In the first
snapshot we see a pore close to
the inclusion, the pore is
slightly asymmetric (lhs). We
calculate the density for every
grid point and we assign a
threshold value. The red points
are below the threshold, the
green ones above (middle
pictures). The center of the
pore is the center of mass of
the red points, the area is the
area of the red pores and we
construct a circle with that
characteristics (middle right).
The blue points represent the
discretisation of the disk on the
grid (rhs). For every snapshot we:

• discretize the lateral dimensions in Nbin number of beads and calculate the bead
density ρ(i, j),
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• associate to every grid point a weight proportional to the inverse of the density,
w(i, j) = 1/(1 + ρ(i, j)),

• multiply each weight by the weights of the nearest neighbours,

w′(i, j) = w(i, j)
∏

i′=−1,1

w(i+ i′, j)
∏

j′=−1,1

w(i, j + j′) (7.1)

• calculate the center of the pore, (xpore, ypore, zpore), zi is the normal coordinate of the
particle i.

xpore =
Lx
Nbin

∑
ij iw

′(i, j)∑
ij w

′(i, j)
ypore =

Ly
Nbin

∑
ij jw

′(i, j)∑
ij w

′(i, j)
zpore =

1
NbNc

NbNc∑
i

zi

(7.2)

• we define a threshold, ρa = 1, and an occupation function o(i, j),

o(i, j) =
{

1 if ρ(i, j) > ρa
0 if ρ(i, j) < ρa

(7.3)

• we calculate how many points are below the threshold (Ng, green points in
figure:7.2) and how many points are above the threshold (Nr, red points in
figure:7.2),

Ng =
∑
ij

(1− o(i, j)) Nr =
∑
ij

o(i, j) (7.4)

• we calculate the area, Apore, and the radius of the pore, rpore,

Apore =
Nr
N2
bin

LxLy rpore =
√
Apore/π (7.5)

• reweight each point with respect to the inverse of its distance from the former
center of mass, The addition of 0.01 is meant to

remove singularities.

w′′(i, j) = w′(i, j)/

((
iLx
Nbin

− xcm
)2

+
(
jLy
Nbin

− ycm
)2

+ 0.01

)
(7.6)

• we recalculate the center of mass and iterate the last point until the value of the
center of mass converges within [0.5∆L],

• the grid points inside a circle centered in (xpore, ypore) and with radius rpore are
described by the function:

o′(i, j) =

{
1 if

(
iLx
Nbin

− xcm
)2

+
(
jLy
Nbin

− ycm
)2

< r2
pore

0 otherwise
(7.7)

• we calculate the acylindricity of the pore, apore,

apore =

∑
ij o
′(i, j)o(i, j) +

∑
ij(1− o′(i, j))(1− o(i, j))∑

ij o
′(i, j)

(7.8)

Expressed in words: the acylindricity is defined as the sum of points below the
threshold inside the circle and of points above the threshold outside the circle
divided by the total number of points inside the circle.

The determination of the center and the radius of the pore are essential to calculate
the following radial profiles.
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Figure 7.3: Thickness profile
between the peptide and the
pore, rhs) characteristic
quantities of the thickness
profile between the pore and
the peptide.

hp rmin dmax dpep/pore

3.5 2.82 3.76 7.69
4.0 5.29 0.00 5.29
4.5 4.77 3.99 6.19
5.0 6.78 3.43 7.33
5.5 5.31 4.16 7.03
6.0 5.65 0.00 5.65

[∆L] [∆L] [∆L] [∆L]

7.3 thickness profile between nanoparticle and pore

We have run NV T simulations of planar membranes with the presence of a toroidal
pore and a transmembrane protein described by different hydrophobic mismatch.
We analyze the thickness profile in a slab connecting the center of the pore with

the center of the peptide as broad as the diameter of the peptide. From the thick-
ness profile we extract the position of the minimum, rmin, the maximum thinning
dmax, and the distance between the peptide and the pore, dpep/pore. For each type of
peptide we calculate the ternary (rmin, dmax, dpep/pore). For the simulation without
oil the correspondent ternary is: (6.08, 3.36, 10.32)[∆L], for simulation with oil it is :
(5.90, 3.79, 10.66)[∆L].This means that the presence of the oil pulls away the peptide
from the rim of the pore.
From the table (7.3) we notice that the peptide is closer to the pore rim for hpep =

4[∆L], i.e. no hydrophobic mismatch. By increasing the height of the peptide the
separation from the pore rim increases until a turning point where the thickness profile
does not show any minimum.
We have not observed any substantial modification of the pore radius and acylindricity

using peptides with different hydrophobic mismatch.

7.4 line tension of the pore

To quantify the effect of peptides and oil on the stability of the membrane under lateral
pressure, we calculate the line tension of the pore in the presence of these defectants.
The systems we study are: (-,-) unperturbed membrane, (pep,-) one peptide, (-,oil)

addition of oil chains, (pep,oil) addition of oil chains and one peptide. The number of
oil chains is one tenth of the total number of lipid chains: Noil = Nc/10.
According to the classical nucleation theory [Litster (1975); Tolpekina et al. (2004)]

the activation energy for the creation of a pore is:λ is the line tension of the pore,

rpore is the pore radius and P l

the lateral pressure. G = G0 + 2πrporeλ− πr2
poreP

l (7.9)

To calculate the activation energy we have to estimate the line tension of the pore.
We consider a membrane with fixed lateral dimension and with a pore of radius rpore.
The free energy of the system is:Lx = Ly =: L lateral simulation

box size.

F (L, rpore) =
kcompr

2L2

(
L2 − πr2

pore − āNc
)2

+ 2πλrpore (7.10)

The minimum of the free energy with respect to change in the pore radius, rpore, is
given by:

∂F

∂rpore
= 0

kcompr
L2

(
L− πr2

pore − āNc
)

= πλrpore (7.11)

While the derivative of the free energy with respect to change in the lateral size L is
given by:

∂F

∂L
= 2L

kcompr
L

(
L2 − πr2

pore − āNc
)

= 2L
λ

rpore
(7.12)
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Figure 7.4: lhs) Lateral
pressure as a function of the
inverse of the pore size. The
slope of the fitting curve is the
line tension of the pore. rhs)
Contour plot of the density of
oil chains between the peptide
and the pore.

A change in the lateral dimension of the box, L, gives the following contribution: P lzz is the lateral tension of the
system,
P lzz = Pzz − (Pxx + Pyy)/2. Lz is
the box size in the normal
direction.

∂F

∂L
=

∂

∂L
(LzL2P lzz) = 2LzLP lzz (7.13)

Unifying (7.11) with (7.12) we finally obtain [Tolpekina et al. (2004)]:

P lzz =
λ

rpore
(7.14)

Starting from an already created pore we have increased slightly the lateral dimensions
of the simulation box and calculated the radius of the pore once the system was re-
equilibrated.
We observe (see fig:7.4) that the presence of the peptide lowers the line tension of the

pore while the oil increase it. The pore line tension is a well know quantity in literature,
for a DOPC bilayer was calculated studying the pore closure dynamics after artificial
poration of giant unilamellar vesicles λDOPC = 20.7±3.5[pN ] [Karatekin et al. (2003a)]
λDOPC = 27.7 ± 2.5[pN ] [Portet and Dimova (2010)]. In [Karatekin et al. (2003a)]
was additionally observed that the presence of cholesterol increases the line tension of
the pore.

7.5 partitioning of oil

Since oil increases the energy barrier for the formation of the pore we want to study
more in detail how the oil partition around the fusion objects and how its presence
modifies the local arrangements of the lipids in its surroundings.
We observe from the density plots of the oil (see fig:7.5) a strong segregation of

the oil at different interfaces. The oil can partition in the bilayer without changing
the local hydrophobic density and relaxes the frustration of the lipid tails (due to
stretching, compression, and tails splay). The partition has an energetic cost in terms
of configurational entropy and gives us important information about where most of
the frustration is released.
Around the peptide the oil sits close to the surface where the thickness of the mem-

brane is largely above the bulk thickness. In this region the lipids are particularly
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Figure 7.5: Contour plots of
the density of oil chains around
a protein (lhs, lowest row),
around a pore (middle), and
around a stalk (rhs). The
density is expressed in units of
[∆L−3] for the solvent-free
model, in [nm−3] for the
Martini simulations. In the
plots are used different color
mappings. In every system we
add Nc/10 of oil chains. The
plots on the top row show the
oil distribution inside the
membrane and the plots on the
middle row the point-by-point
difference in the hydrophilic
density between the system
with and without the oil. The
lines represent the isoline
corresponding to half of the
bulk density of the hydrophilic
(green line) or the hydrophobic
(blue line) beads. The lowest
row shows the oil partitioning
in Martini simulations (lhs)
and the point-to-point
difference in the hydrophobic
density profile between the
system without and with the
oil.

stretched and the presence of the oil reduces the extension of the chains. An interest-
ing phenomenon is that the oil in the region where the lipids are depleted is depleted
as well. The oil does not partition in the region of the overshoot of the thickness profile
and does not modifies it (on the bottom lhs of the fig:7.5).
Looking at the oil partition inside the pore (middle column of the graph:7.5) we

realize that the oil does not sit close to the rim even though the effect of the partition
is strong. Probably the large compression of lipids around the rim of the pore does not
allow the addition of other apolar material and the oil rather relaxes the conformation
of the lipids in the region where the thickness profile is above the bulk value.
Referring to the stalk (rhs column of the fig:7.5) we observe that most of the oil sits

at the lower and upper end of the stalk and not in the trunk. The surprising effect
is that the presence of the oil does not change the indentation of the stalk, di, but
increases the trunk, dt. The indentation has a large energy cost in terms of bending
and the expansion of the trunk should for the same reason increase the energy cost.
Indeed we observe that the oil moves the membrane from the lamellar towards the
inverted hexagonal phase causing the stalk to expand.

7.6 bond length

Since the density of the system around the defectants does not significantly change we
would expect that the relaxation induced by the presence of the oil would not affect
the total energy from the non-bonded interactions. In the solvent-free model the beads
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in the chains are connected by harmonic springs and the energetic contribution due
to this interaction is straightforward to calculate. We have hence decided to calculate
the distribution of hydrophobic bond length around the defectants.

Figure 7.6: Contour plots of
the density of bond length
around a stalk. The density is
expressed in units of [∆L−2]
for the solvent-free simulations,
[nm−2] for the Martini. In the
plots are used different
definitions of the color
mapping. The first row shows
the contour plot of to three
system without oil: around the
peptide (lhs), around the pore
(middle) and the stalk (rhs).
The second row refers to the
same three systems with the
addition of oil in proportion of
1/10Nc. The lower row
represents the contour plot of
Martini simulations around a
stalk: without oil (lhs), with oil
(middle). The rhs graph of the
lower line represents the point
to point difference between the
two graphs at its lhs.

The hydrophobic bond length is simply the squared distance between two linked beads
of the same type on the same chain

r2
bond = (xi − xi+1)2 + (yi − yi+1)2 + (zi − zi+1)2 (7.15)

where the monomer i and the monomer i+ 1 are on the same type and belong to the
same chain. We have considered both hydrophobic tails and oil chains and normalized
the profiles by the volume of the slab they belong.
Looking at the plots of the bond distribution (see fig:7.6) we obtain important infor-

mation about the stretching energy of the chains around the defectants but surprisingly
we notice that the influence of the oil is really small. In the graph of the point-to-point
difference between the bond length in the Martini simulations (third row and third
column in figure:7.6) we see that most of the difference is concentrated in the trunk
of the stalk. This is mainly due to the elongation of the stalk by the presence of oil
but we do not register a change in the bond length by the presence of oil. The in-
teresting difference between the Martini and the solvent free simulations is that most
of the elongation is concentrated on the polar/apolar interface in the first case and in
the equatorial plane in the second case. The difference is mainly connected with the
parametrization of the Martini model into amphiphilic chains (see fig:5.2) and false the
comparison between the two models (the interactions between the phosphate groups
and the chains beads are different).
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7.7 lateral pressure profile

We quantify the relaxation induced by the partitioning of the oil by calculating the
differences between the lateral stress profiles.
Recalling the equation (1.8) the local pressure is the sum of the local densities (ideal

gas contribution) and the virial (interaction term):

Pαβ(x) = ρ(x)− 1
3V

(x)∑
ij

dUij
dr

xαijx
β
ij

rij
P totαβ =

1
V

∫
dxPαβ(x) (7.16)

The pressure profile is calculated on a fine grid along the radial and normal compo-
nents. We assign to each grid point the densities of the hydrophobic and hydrophilic
beads and the nine components of the virial tensor. To correctly assign the contri-
butions of the interparticle interactions to each grid point, we draw a line connecting
particle i with particle j. The line is divided into 100 segments and for each segment
we add 1/100 of the value of the virial to the correspondent grid point. For each grid
point we assign the density of the hydrophobic and hydrophilic beads and the nine
components of the virial tensor.
We calculate the free-energy modification under a change in the radial distance, R:rs is the distance in spherical

coordinates: r2
s = x2 + y2 + z2 =

R2x′2 +R2y′2 + z2,
Z is the partition function of the

system

∂F

∂R
= − ∂

∂R
lnZ Z :=

∫
drNs e

−H(rNs ) (7.17)

which corresponds to the energy of extending the pore by a quantity ∂R.
We can rescale the system units in normalized cylindrical coordinates:

x = Rx′ y = Ry′ drs = dxdydz = R2dx′dy′dz′ = R2dr′s (7.18)

We perform the derivative of the eq:(7.17):

∂F

∂R
= − ∂

∂R
lnZ = − ∂

∂R
ln
∫

d(r′sR)Ne−H(rN ) = − ∂

∂R

(
lnR2N + ln

∫
dr′s

N
e−H(rs

N )

)
(7.19)

We perform the derivative of the logarithm and we exchange the derivative with the
integral:∂R ln f(R) = f ′(R)/f(R),

∂R
R

dr′s =
R

dr′s∂R
∂F

∂R
= −2N

R
+

1
Z

∫
dr′s

N ∂H(rsN )
∂R

e−H(rs
N ) = −2N

R
+
〈
∂H(rsN )
∂R

〉
(7.20)

∂rs
∂R

=
∂
√
R2x′2+R2y′2+z2

∂R
=

x2+y2

Rrs

The first term on the right hand side corresponds to the ideal gas contribution, the
second term to the ensemble average of the virial. We perform the derivative of the
distance r with respect to the scaling distance R:

∂F

∂R
= −2N

R
+
〈
∂rs
∂R

∂H(rsN )
∂rs

〉
= −2N

R
+

1
R

〈
x2 + y2

rs

∂H(rNs )
∂rs

〉
(7.21)

We can hence connect the (eq:7.17) in terms of pressure in Cartesian coordinates:V = πR2Lz

∂F

∂R
= −πRLz

(
P totxx + P totyy

)
= − 1

π

∫ R

0

dr
∫ Lz

0

dz (Pxx(r, z) + Pyy(r, z)) (7.22)

From the previous equation (see eq:7.21) we can see that the transformation between
cylindrical and Cartesian coordinates is:

Prr(r, z) = Pxx(r, z) + Pyy(r, z) (7.23)

For homogeneous systems the angular component of the pressure is identically zero
[Ollila et al. (2009)]. The lateral pressure is the difference between the direction we
are looking at and the perpendicular directions:

P lzz(r, z) = Pzz(r, z)− (Pxx(r, z) + Pyy(r, z)) /2 (7.24)
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Figure 7.7: Lateral pressure
profile around the peptide. On
the lhs column is presented the
radial component of the lateral
pressure profile, P lrr(r, z), on
the rhs side column the normal
component, P lzz(r, z). In each
column is used the same color
map. The values of the
pressure are expressed in units
of 10−6[kBT/∆L

3]. The radial
profiles are calculated around:
the pore (first row), the pore
and oil (second row), the
peptide (third row), the
peptide and oil (forth row), the
stalk (fifth row), the stalk and
oil (sixth row).
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Figure 7.8: Lateral pressure
profiles (W l

zz(z)),
(W l

xx(z) +W l
yy(z))) along the

normal coordinates and density
of hydrophobic and hydrophilic
beads.

The lateral pressure profiles are particular useful to show where the interface between
two medium sits and to calculate the surface tension between them.
The spontaneous curvature of the monolayer can be calculated from the pressure

profile [Baoukina et al. (2010); Szleifer et al. (1992)]:c0 spontaneous curvature.

kbenc0 =
1
2

∫
dz |z|P lzz(z) (7.25)

The integration is performed from the center of the bilayer, z = 0, and, using the value
of table (4.3) for the bending rigidity, we obtain: cmon0 = −0.36[∆L−1].
In the plot (fig:7.7) we have shown the lateral pressure profiles (radial component on

the lhs column and normal component on the rhs column) around the defectants. In
the normal profiles we observe a clear interface between the hydrophobic/hydrophilic
interface (as shown in the red line in fig:7.8). Around the peptide we can see a clear
packing of the lipids that creates interfaces between the different lipid shells. In the
center of the stalk we see another clear interface at the trunk of the stalk. In all the
profiles we observe a slight influence in the profiles by the presence of oil. The effect
is really small and affects the region where the oil density is larger and between the
hydrophobic/hydrophilic interface.

7.8 conclusion

The presence of the peptide has a strong influence on the properties of a pore. In the
previous chapter we have seen that the presence of the peptide weakens the membrane.
In this chapter we have confirmed this prediction showing that the peptide lowers the
line tension of the pore (and hence its activation energy) and we have calculated the
mean separation between the peptide and the pore. The membrane deformations
induced by a protein superimpose with the deformation induced by the pore and the
protein sits at a fixed distance from the center of the pore. This distance depends on
the hydrophobic mismatch of the peptide.
The oil has a larger conformation space than the lipids and can partition to release

the frustration on the lipid chains. The effect of the oil is reflected in relaxing the
pressure inside the bilayer. The presence of oil increases the pore line tension of the
membrane and shields the weakening effect of the transmembrane protein.
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Chapter 8

conclusions and outlook

8.1 summary

In this work we have presented a soft solvent-free coarse-grained model to study the lo-
cal modification of bilayer membranes around fusion objects: transmembrane proteins,
pores and stalks.
The key features of the model is the Hamiltonian for the non-bonded interactions

whose strength is controlled by the virial coefficients and the weighting functions. The
virial coefficients are mainly set by the bulk compressibility, the incompatibility, and
the coexistence density of the hydrophobic melt. We have shown as example, how
the control of the bulk compressibility can reproduce the rich phase behaviour of lipid
membranes and influence the material properties.
Thanks to the softness of the model we could calculate from thermal fluctuations some

of these characteristic material properties: the volume and area compressibility, the
elastic coupling between the two leaflets, and the bending rigidity. These properties
were calculated by studying the fluctuations of the density, the area per chain, the
membrane thickness and membrane height. To calculate the coupling moduli of this
energetic contributions we have discretized the space and calculated the fluctuation of
each quantity at the respective grid point. To determinate the correspondent coupling
moduli we extrapolate the quantities fluctuations to infinite size dimensions.
The determination of these coupling moduli allowed us to construct a continuum

model where the different deformations of the two coupled monolayers are represented
by their respective free-energy contributions. In this model the surface curvature is
controlled by the bending modulus, kben, the stretching by the surface tension, γ′, and
the height differences by the elastic coupling kel. The description of the model is based
on differential geometry that we solve using discretized differential operators on grid
points.
The continuum model is around 10 000 times faster than the simulations and we use

this model to finely explore the membrane modification by the presence of transmem-
brane proteins. The protein, due to its hydrophobic mismatch, modifies the confor-
mation of the membrane and locally increases the distance between the two leaflets
inducing local curvature and frustration to the lipids. With the combined use of
molecular dynamics simulations and numerical calculation we explore the change in
the membrane deformations depending on the hydrophobic mismatch of the protein
and on the contact angle between the protein and the surrounding membrane.
The cumulative effect of the presence of many proteins amplifies the effect of the

single protein within a certain range that we determine. Within this range we have
observed that a particular arrangement of proteins stabilizes a pore in a tensionless
state of the soft and coarse-grained model and shows the break-down of the continuum
model.
We have looked at the discrete structure of the bilayer and investigated the change
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in conformation of the lipids and identified a region of weakening of the membrane.
We have concluded that the presence of the peptide lowers the nucleation barrier of
the pore and, for quantifying it, we have calculated the line tension of the pore and
quantified the contribution of the peptide.
We have observed that the presence of oil partially shields the effect of the protein

and increases the line tension. To understand the role of oil we study how it partitions
around the peptide and how the oil relaxes the lateral tension in the proximity of the
protein.
We have extended the same analysis to the local properties of the stalk. Using a

novel method to determine the position of the stalk, we could calculate the density,
thickness, and pressure profiles calculated in the case of the protein. We have observed
that the properties of the stalk depend on the hydration between the two bilayers and
we have compared the typical size of the stalk in different models and experiments and
estimated the dependence of the bilayer repulsion on the intermembrane hydration and
the lateral tension.
Finally we have developed a calculation method to determine whether an hydropho-

bic moiety is energetically more favorable inside the bilayer or in the solvent with a
polymeric coating.

8.2 conclusions

In this work we have shown how to describe the complex physics of lipid membranes
on large scale by using the three important features of our model: coarse-grained, soft
and solvent-free.

coarse-grained

The physics of membrane has interesting properties in terms of macroscopic and mi-
croscopic modifications that coarse-grained models can exhaustively capture. We have
shown as from the particle-based description we could refer to microscopic quantities
and the relationships between the particle interactions and the macroscopic modifica-
tions. The simulations were used to build a continuum model that can capture the
essential properties of big structures. Due to the discrete structure of the membrane
topological modification are allowed starting from the local rearrangement of an hand-
ful of lipids. The time and length scales for the triggering of those processes are too
small for experimental observations and the evolution of the shape modifications is
too large for atomistic models. Using our coarse-grained model it was possible to de-
scribe complex topological changes like stalk and pore formation and fusion events.
The fusion event is indeed a perfect application for coarse-grained models and we have
observed and isolated fusion events trigger by the presence of an artificial pore or a
stalk. Molecular dynamics simulations are particularly appropriate to construct spe-
cific system configurations and to study the interactions between fusion objects. The
development of analysis tools to calculate local modifications of lipid chains around
fusion objects was extensively used in this work to quantify characteristic length and
energetic quantities of the lipid-mediated interactions between transmembrane pro-
teins and pores. The effect of superimposition was always notable and has as most
relevant feature the determination of a particular equilibrium distance and interaction
range between different proteins and proteins and pores.

soft

A key aspect of this work was to show how via soft models we could calculate energetic
contributions simply by averaging from thermal fluctuations. Molecular dynamics
models that implement strong forces (hard core repulsion) show large fluctuations in
energies and require more complicated sampling techniques to calculate, for example,
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the energetic coupling moduli of membrane deformation and bilayer repulsion. This
allowed us to show the dependence of the bending modulus from the local curvature
and to calculate and compare the line tension of the stalk and the pore.

solvent-free

Solvent-free models are particularly important to avoid the complex problem of equi-
librating the number of water molecules under large membrane deformations. This
characteristics allowed us to squeeze vesicles, to elongate stalks, and to sample in-
termembrane distances between two opposed membranes. Despite the lack of solvent
molecules we could mimic the hydration between opposed bilayers by rescaling the head
group interactions. This has as main consequence a change in the bilayer repulsion, a
transition between the lamellar to the inverted hexagonal phase, and a condition for
the stability of a stalk. The absence of solvent molecules is as well important to avoid
artifacts during the fusion process caused by the incompressibility of water during the
stalk expansion.

Figure 8.1: Cut through of the time evolution of the pore-triggered fusion pathway. An
artificial pore is created in the lower membrane (lhs). A stalk is created close to the
artificial pore (middle). The stalk elongates around the pore until it encloses it completely
(rhs). The last configuration is called π shaped hemifusion diaphragm and it is the last
stage before the formation of a pore on the upper membrane and hence the fusion between
the two membranes.

soft, coarse-grained, solvent-free

With this work we want therefore to point out the conceptual gain of using soft coarse-
grained models. Despite the simplicity, these models can reproduce basic features of
lipid bilayers even though the full experimental characteristics are not matched. These
models allows the exploration of complex phenomena of lipid reordering with a clear
description of the lipid conformations. By changing the model parameters and the
boundary conditions we have induced important membrane shape deformations like
the stabilization of a pore, the elongation of a stalk, and the fusion process. The
superposition of the shape deformations influence as well the interactions between the
fusion objects (pores, stalks, and peptides) and we have shown how the combined
effects of these objects further modify the membrane structure (a pore stabilized by
transmembrane proteins, a stalk elongates around a stable pore, a pore is formed in
proximity of a stalk).
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8.3 outlook

Pore and stalk formation between two opposed membranes are competitive phenom-
ena that depend on the lateral tension and dehydration between two bilayers. We
have observed the fusion process between two opposed bilayers in a certain region of
dehydration and lateral tension.
Alternatively we have observed that after the stabilization of a pore, a stalk is spon-

taneously formed, the stalk wonders close to the pore, it elongates circularly around
it realizing a π shaped hemifusion diaphragm (see fig8.1).
These fusion pathways point out a lipid-mediated interaction between stalks and pores

that can be further investigated with the techniques developed in this work. The idea
is to represent a pore by an external field or a transmembrane protein to be able to fix
the position of the pore and control the line tension and the radial thickness profile.
The stalk is free to move from the center of the pore and we can, by modifying the
thickness profile of the pore, attract or repel the stalk. By modifying the line tension
of the pore we could expand or retract the expansion of the stalk around the pore.
This is intended to be a paradigm to describe the fusion process of the more accurate
case of fusion driven by a barrel stave pore stabilized by a peptide bundle.
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8.4 discrete solution of the continuum model

To compute the Euler-Lagrange equation (see eq. 6.7) we have discretized the 2-d
differential operator using finite differences. We take a regular grid on Ng points per
edge where every point is separated by a distance h. We take the following forth order
differential operator:

D = c′4∇4 + c′3∇3 + c′2∇2 + c′1∇+ c0 (8.1)

We rescale the coefficients by

c4 =
c′4
h4

c3 =
c′3
h3

c2 =
c′2
h2

c1 =
c′1
h

(8.2)

We define the following prefactors:

a−2 = −c3
4

+
3
2
c4 a−1 = −c1

2
+ c2 +

3
2
c3 − 6c4 a0 = c0 − 2c2 + 9c4

a1 = −c1
2

+ c2 −
3
2
c3 − 6c4 a2 =

c3
4

+
3
2
c4 (8.3)

Its discretisation is:
D =

(
a−2 a−1 a0 a1 a2

)
(8.4)

We create an interaction matrix connecting the particle (i, i) with the particle (i+ j, i)
and with the particle (i, i+ j) by the weight aj where j = −2,−1, 0, 1, 2. To each grid
point is associated a thickness d(i,i). The interaction matrix is:

m(i+j,i),(i,i) = ajd(i+j,i) m(i,i),(i,i+j) = ajd(i,i+j) j = −2,−1, 0, 1, 2 (8.5)

which is the convolution of the operator (eq:8.4) with the interaction matrix. We have
to solve the following equation:

Md = b (8.6)

The exact solution is given by inverting the matrix M .

d = M−1b (8.7)

The inversion of the matrix is done by a LU decomposition and the algorithm scales
with N4

g .
For system size larger than Ng = 60 we use the Jacobi iterative method to speed up

the solution. The method consists in separating the matrix as sum of the diagonal
and non diagonal terms:

M = Md +Md̄ (8.8)

The iterative solution is given by:

dt = M−1
d (b−Md̄d

t−1) dti,i =
1

m(i,i)(i,i)

bi − N2
g∑

j 6=i

m(i,i)jd(i,i)

 (8.9)
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In this case we can avoid to allocate any matrix and just compute:

dt(i,i) =
1

dt−1
(i,i)

b(i,i) − ∑
−2<j<2

ajd
t−1
(i+j,i) −

∑
−2<j<2

ajd
t−1
(i,i+j) + 2a0d

t−1
(i,i)

 (8.10)

Knowing the exact solution (by matrix inversion) we have observed a good convergence
around 1000 time steps. The time gaining by the use of the iterative method is
important already at Ng > 30.

8.5 interpolation/smoothing

Most of the quantities calculated in this work were calculated discretisation the space
and assigning a mean value to the correspondent grid point of the discretisation.

Figure 8.2: Different method
of interpolating points in the
space (from lhs to rhs):
third-order splines, forth order
finite differences, B-splines,
polynomial.

Each grid point is not independent from its neighbours especially in the motion of
planar membranes or linear stalk. To induce correlation between neighbouring points
we have used different interpolation and smoothing techniques that we are showing in
this section.
An interpolating function is a continuum function zi(x) defined in the interval xi−1 <
x < xi+1 by the neighbouring points i + j where j ranges between −2 < j < 2. The
parabolic interpolating is defined by:

zi(x) = a2x
2 + a1x+ a0 zi+1,i = zi+1 − zi zi−1,i = zi−1 − zi

a2 =
zi+1,ixi−1,i − zi−1,ixi+1,i

x2
i+1,ixi−1,i − xi+1,ix2

i−1,i

a1 =
zi−1,i

xi−1,i
− a2xi−1,i a0 = zi(8.11)

Using the maximum likelihood:

z(x) = a2x
2 + a1x+ a0

Xj :=
N∑
i

xji Y :=
N∑
i

yi XjY :=
N∑
i

xjiyi Xj · Y :=
N∑
i

xji

N∑
i

yi

a2 =
(NX2Y −X2 · Y )(NX2 −XX)− (NX3 −X2 ·X)(NXY −X · Y )

(NX4 −X2 · x2)(NX2 −X ·X)− (NX3 −X2 ·X)2

a1 =
(NXY −X · Y )− a2(NX3 −X2 ·X)

NX2 −X ·X

a0 =
Y − a1X − a2X

2

N
(8.12)

The third-order polynomial interpolation is:

zi(x) = a3x
3 + a2x

2 + a1x+ a0 where xi−1 < x < xi+1

a3 =
zi+2,i
xi+2,i

− zi−1,1
xi−1,i

− ( zi+1,i
xi+1,i

− zi−1,i
xi−1,i

)(xi+1,i − xi−1,i)/xi+2,i1

x2
i+2,i − x2

i−1,i − (x2
i+1,i − x2

i−i,1)(x2
i+2,i − x2

i−1,i)/xi+1,i−1

a2 =
zi+1,i/xi+1,i − zi−1/xi−1,i − a3(x2

i+1,i − x2
i−1,i)

xi+1,i−1

a1 = zi−1,i/xi−1,i − a2xi−1,i − a3x
2
i−1,i a0 = zi (8.13)
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The 4th-order spline on a regular mesh (h = xi − xi−1 ∀xi) is:

zi(x) = a4x
4 + a3x

3 + ai2x
2 + a1x+ ai0 where xi−1 < x < xi+1

a0 = zi ai2 = ai−1
2 ai+1

2 = a′2 (8.14)
a4 = 3a′3/h+ (ai2 − a′2)/h2 a3 = a′3 − 6a4h (8.15)
a1 = zi+1,i/h− a2h− a3h

2 − a4h
3

(8.16)

where a′2 and a′3 are token from the cubic interpolation (see eq:8.13) and where the co-
efficient ai2 is calculated in the former cubic interpolation. The forth-order polynomial
interpolation is:

zi(x) = a4x
4 + a3x

3 + a2x
2 + a1x+ a0 where xi−1 < x < xi+1

a4 =
zi−2/24− zi−1/6 + zi/4− zi+1/6 + zi+2/24

h4

a3 =
zi−2/12 + 4zi−1/6− 4zi+i/6 + zi+2/12

h3

a2 =
−zi−2/24 + 2zi−1/3− 5/4zi + 2zi+1/3− zi+2/24

h2

a1 =
−zi−2/12 + 4zi−1/6− 4zi+1/6 + zi+2/12

h
a0 = zi (8.17)

For the B-spline of the o order:

z(x) =
N−o−2∑

i

zibo(x− xi) bo(x) :=
o+ 1
o

o∑
n

wn, o(x− xi)o+

wn,o :=
o+1∏

j=0,j 6=i

1
xj − xn

(x− xi)o+ :=
{

(x− xn)o if x ≥ xi
0 if x < 0 (8.18)

The extension of the interpolation functions in two dimensions is trivial on a regular
grid.
The smoothing was executed convoluting a smoothing matrix, S, with the data ma-

trix, M : S is a Ns ×Ns smoothing matrix,
M is a Nm ×Nm data matrix.

M ′ = M ⊗ S M ′i,j =
Ns/2∑

r=−Ns/2

Ns/2∑
c=−Ns/2

Mi+r,j+cSr,s (8.19)

The smoothing matrix has to fulfill the following properties:

Ns/2∑
r=−Ns/2

Ns/2∑
c=−Ns/2

Sr,s = 1 (8.20)

The typical matrix used for the smoothing is the discretized Gaussian:

SG =


e−

2x
2σ e−

√
3x

2σ e−
√

2x
2σ e−

√
3x

3σ e−
2x
2σ

e−
√

3x
2σ e−

√
2x

2σ e−
x
2σ e−

√
2x

2σ e−
√

3x
2σ

e−
√

2x
2σ e−

x
2σ 1 e−

x
2σ e−

√
2x

2σ

e−
√

3x
3σ e−

√
2x

2σ e−
x
2σ e−

√
2x

2σ e−
√

3x
2σ

e−
2x
2σ e−

√
3x

3σ e−
√

2x
2σ e−

√
3x

3σ e−
2x
2σ

 (8.21)

This matrix is successively rescaled to 1.
We use interpolation for the following calculations:

• estimate the energies of the bending and stretching of the mesh (polynomial),
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• reconstruct the shape of the linear stalk (B-spline),

• reconstruct the shape of the membrane’s height and thickness (B-Spline),

• induce correlation in the radial profiles (Gaussian).

8.6 domain decomposition

For each step of a Monte Carlo simulation we have to calculate the distances between
the probe particles and all the other particles within the cut-off distance. In the
grand canonical ensemble the fluctuations of the number of particles is substantial and
therefore we have to develop a fast and reliable scheme to calculate the interparticle
distances. We have written a domain decomposition c++ class to store all the infor-
mation of the particle positions and to connect the particles by spatial neighbourhood.

usage

The class is meant to be used as a black box, the class is allocated at the beginning
and disposes of a series of functions to fill and to clear the list and to operate on
the single particles (addition [AddPart], removal [RemPart], displacement [MovePart],
and swapping [SwapPart]).CutOff2: squared cut-off distance,

Edge: box edges (Lx, Ly , Lz).
pNPart(): returns the total

number of particles
DomDec *Pc = new DomDec(Edge,pNPart(),sqrt(CutOff2));
for(int p=0;p<pNPart();p++)

Pc->AddPart(p,Pos[p]);
Pc->Erase();

The class is particularly tuned for Monte Carlo simulations, for each time step a for
loop calls the specific functions of the domain decomposition class. These functions
consist in: an init function to assign all the private iterators, [SetCurr], a step function
which increments the iterators [NextCurr], an if function that returns 0 when the
iteration has reached the end [IfCurr]. Inside the for loop a function returns the squared
interparticle distance between the two particles pointed by the iterators [Dist2Curr].DistRel: relative distance

(x, y, z, r) between the particles
pointed by the iterators i1 and i2. double DistRel[4];//x y z r

for(int p1=0;p1<pNPart();p1++){
for(Pc->SetCurr(p1);Pc->IfCurr();Pc->NextCurr()){
Pc->Dist2Curr(DistRel);
if(DistRel[3] > CutOff2) continue;

}
}

structure

To allocate the class we need to specify the cutoff distance of the system. The box
volume is divided in small cells as wide as the cut-off distance we construct two struc-
tures, the cell and the particle structure. The cell structure contains the information
of the first and last particle in the chain. The particle structure contains the position
of the particle and two indices that point to the previous and the consecutive particle
inside the cell. The consecutive particle of the last particle in the cell is marked as
-1 and set the end of the list, the previous particle of the first particle in the cell is
marked as -2 and set the beginning of the list. The iteration on the particle list can
be done in both ways: from the last to the first or vice versa. This data structure is
called linked cell list [Frenkel (2002)].
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operations

Every time that we select one particle p1 we have to:

• identify the cell in which it is contained,

• set the first iterator on the particle p2,

• set the second iterator on the first particle of the cell,

• obtain the list of the 26 neighbouring cells.

During the last operation an array with the 26 neighbouring cells, cn, is allocated
considering the periodic image convection. At the same time another array, bi, is
allocated with the information about periodic image convection in all the direction.
This array corresponds to the particle p1 and contains the number −1, 0 or 1 for
each direction. Once this array is allocated [Dist2Curr] returns the following squared
interparticle distance:

d2(p1, p2) = (xp1 − xp2 + xbiLx)2 + (yp1 − yp2 + ybiLy)2 + (zp1 − zp2 + zbiLz)
2

(8.22)
This method avoids the computation of the minimum image convention for
every interparticle distance improving the performance of the algorithm. The squared
interparticle distance avoids to calculate the square root for interparticle distances
within the squared cut-off radius and for many potentials that depends on even powers
of the interparticle distances.
The iteration over the neighbouring particles is done in the following way:

• the second pointer, i2, points to the particle p2,

• if the particle p2 is equal to the particle p1 the iterator i2 is incremented,

• if the iterator i2 reaches the end of the cell, the iterator i2 is assigned to the first
particle of the next cell in the list cn,

• if the iterator i2 reaches the last particle of the last cell of the list cn the functions
[IfCurr] interrupts the for loop.

This domain decomposition class is meant to be a separated entity of simple imple-
mentation and it robustness was explored during long Monte Carlo simulations.
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abstract

Solvent-free soft coarse-grained models are particularly appropriate to investigate col-
lective phenomena in lipid membranes. In this work we exploit such a model to
show how modifying a few model parameters we can control the bending rigidity of
the membrane, the hydration repulsion, and the macroscopic phases of self-assembled
structures. Further, we investigate the lipid mediated interactions between fusion ob-
jects: transmembrane proteins, pores and stalks. The presence of such defects induces
a perturbation in the shape of the membrane and in the conformations of lipids. The
modifications induced by single defects superimpose and for some defect interaction
(peptide-peptide, pore-peptide) we identify the equilibrium distance between these ob-
jects. The prediction of the results of the simulations are compared with the numerical
solution of a continuum model parametrized from the analysis of the simulation snap-
shots.
The presence of transmembrane proteins with a large hydrophobic mismatch weak-

ens the membrane over the direct interaction range decreasing slightly the membrane
thickness. This involves the lowering of the line tension of the pore and for a particular
number and spatial arrangement of proteins the line tension of the pore is negative
and the pore is stable in tensionless membranes. Another agent that influences the
line tension of the pore is oil (short hydrophobic chains). The oil has a configuration
space larger than the one of the lipids and partitions to relax the frustration of the
lipids at the interfaces and increases the line tension of the pore (the membrane is
more resistant under lateral tension).
The model parameters have a large influence on the equilibrium properties of a stalk

and we study the characteristic sizes of stalks depending on the hydration between two
opposed bilayers and compare the results to other simulation models and experimental
data. We show how hydration and lateral tension influence bilayer repulsion and how
the combined effect of both contributions leads to membrane fusion.

110



Minimale Modelle für Lipidmembranen:
lokale Änderung um Fusionsobjekte.

Zusammenfassung

Lösungmittelfreie, weiche und vergröberte Modelle sind besonders geeignet um kollek-
tive Phänomene von Lipidmembranen zu untersuchen. In dieser Arbeit werten wir
solche Modelle aus, um zu zeigen wie wir, nach der Änderung von einigen Parame-
tern, die Biegesteifheit, die Hydrationabstoßung und die makroskopischen Phasen von
selbstassemblierten Strukturen steuern können.
Danach, untersuchen wir die lipidvermittelten Wechselwirkungen zwischen Fusionob-

jekten: transmembrane Proteine, Poren und Stalks. Die Anwesenheit von solchen
Störungsstellen schafft eine Änderung in der Lipidanpassung. Die Änderung wird
durch einzelne Störungstellen erzeugt und überlappt in vielfältigen Störungstelleanord-
nungen. Wir bestimmen den Gleichgewichtsabstand zwischen diesen Objekten. Die
Voraussagen dieser Simulationen werden mit der numerischen Lösung von kontinuier-
lichen Modellen verglichen, wobei das Modell durch die Analyse von Simulationschnap-
schüssen parametrisiert wurde.
Transmembrane Proteine mit großer hydrophober Unausgeglichenheit schwächen die

Membran über den Wechselwirkungbereich hinaus und verringern leicht die Mem-
brandicke. Das verursacht eine Abnahme der Porenlinienspannung, für eine bestimmte
Anzahl und räumliche Anordnung von Proteinen wird die Porenlinienspannung negativ
udn führt zu stabilen Poren in spannunglosen Membranen. Die Porenlinienspannung
wird auch durch Öl (kurze hydrophobe Ketten) beeinflusst. Das Öl hat einen großeren
Konfigurationraum als bei Lipiden und verteilt sich um die Frustration der Lipide
an der Grenzfläche zu entspannen und um die Porenlinienspannung zu erhöhen (die
Membran ist resistenter gegenüber lateralen Spannung).
Die Modellparameter haben einen großen Einfluss auf die Gleichgewichtseigenschaften

eines Stalks. Wir untersuchen die charakteristischen Großen, die von der Hydration
gegenseitiger Doppelschichten abhängig sind. Wir vergleichen die Ergebnisse von ver-
schiedenen Simulationmodellen und experimentellen Daten. Wir zeigen wie die Dop-
pelschichtabstoßung von Hydration und lateraler Spannung abhängig ist, und wie die
kombinierten Effekte zur Membranfusion führen.
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