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Drug Delivery

A vesicle is a small sphere, ' 1[µm], limited by a bilayer membrane.

The membrane is composed by a large number of amphiphilic

molecules diveded in two blocks, one hydrophobic and one hydrophilic.

The hydrophobic blocks compose the interior and are shielded by the

hydrophilic that are in contact with the polar solvent. The liposome are

vesicle made of lipids, the polymersome are made of polymers.

These vesicles can be equiped with proteins. The particular pattern of

these membranes is reconignized by specific membrane of the biological

cells to whom the vesicles can fuse or bind. Different types of

liposomes and polymersomes, are studied to improve the selectivity and

the compatibility of these vesicles with the biological cells [?], [?].

The vesicles can delivery important drugs to free into the cytosol

avoiding the contact of the drug with other cells not interested in the

therapy.
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Nanoparticles

The nanoparticles are particles ranging in the nanometer scale. They

are composed by a metallic (Au) or semiconductor core (CdSe, ZnS),

they can have zinc coating, and an external layer of grafted polymers.

The polymer brush provides the degrees of polarity of the nanoparticles.

The nanoparticles can be inserted into the vesicles and interact with

external electric field. Semiconductor nanoparticles have particular

fluorescent spectral lines and trace the position of the liposome and

polymersome. Gold nanoparticles can resonate under a tuned electrical

stimulus, heat up and kill the malignant cells.

It is of fundamental importance the stability of the nanoparticle in the

membrane. The nanoparticles should move together with the vesicles

and trace their positions.

The experimental group of prof. Maskos of Mainz creates a system

polymersome/nanoparticles.
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Homopolymer Melt

An hydrophobic polymer chain in a polar solvent minimize the surace area with

the surroundig. The third-order virial expansion is the lowest order equation

of state that allows the phase coexistence of the melt with ist vapour. The

model is coarse-grained and solvent free and provides onslide the effective

interactions between the chains. The determination of the virial coefficients

is provided by the incompressibility and the coexistence density of the melt.

The density profile of the melt shows a segregation of the melt in a portion

of space where the density is constant ρcoex. The liquid-vapour interface is

sharp.

H[ρ]
kBT

=
R vAA

2
ρ2(r) + 2vAAA

3
ρ3(r)dr

ρc + vAA
2
ρ2 + 2vAAA

3
= 0

k−1
T = ρ+ vAAρ

2 + 2vAAAρ
3
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Diblock copolymer

A new species is added. The chains are formed by one third of
hydrophilic monomers (blue) and two third of hydrophobic
The new species adds new interactions. Estimation of the new
virial coefficients.
vBBB = 0, good solvent conditions. Empirically:
vABB = VAAB = VAAA, VBB = 0.1. Formation of stable
bilayer.

Flory-Huggins

χ ' ρ0 2vAB−(vAA+vBB)
2

.
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Virial Coefficients

We can control the thickness, dt, and the density of chains per area σc, varying the number
density of chains, ρc, and the incompatibility between the two species χN .

χN dt [Re] Sc [R2
e]

30 0.826 0.0197
40 0.834 0.0186
50 0.92 0.0150
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Nanoparticle

The coarse-grained model does not consider structural details within
a certain length. We describe the nanoparticle via two parameters:
size and degree of hydrophobicity. In the integrated Lennard-Jones
potential the control the size via the hard-core radius and the at-
traction to the hydrophilic beads via the Hamaker constant

The Hamaker constant controls the contact
angle with the hydrophylic melt
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The hard-core radius and the Hamaker constant
control the chemical potential.
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Stability

We study sistematically the condition of stability of the nanoparticle in the hydrophobic shell of
the membrane.
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Stability

We study sistematically the condition of stability of the nanoparticle in the hydrophobic shell of
the membrane.

h = 2.0[kBT ], r = 4.5[nm]
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Stability

We study sistematically the condition of stability of the nanoparticle in the hydrophobic shell of
the membrane.

h = 1.0[kBT ], r = 13.1[nm]
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Stability

We study sistematically the condition of stability of the nanoparticle in the hydrophobic shell of
the membrane.

h = 0.25[kBT ], r = 11.56[nm]
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Stability Diagram

Different values of the Hamaker constant and the hard-core radius provide the stability of the
nanoparticle.
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Conclusions and outlook

The observed stable nanoparticles range within 3 and 9 [nm]. No information is given up to
now on the contact angle.

The vesicles in the experimental set-up have different sizes. The diameter of these polimersomes
can be within two order of magnitude, 100[nm]− 10[µm] but have the same thickness.

Study the influence of the curvature on the stability.

Control if the presence of apolar molecule can fill the depletion created by large
nanoparticles a support the stability.

Improve the mapping with new experimental data.
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DPD

Dissipative Particle Dynamics1

The forces are pair-wise interactions
and conserve momentum

The forces are soft

Brownian thermostat

F ij

F ij = f ijw(r), w(0) := 1 w(rc) := 0

F ij = F c
ij + F d

ij + F r
ij

Brownian thermostat

Dissipative Force
Fdij := −γwd(rij)(vijrij)r̂

Random Force

Frij := −
r

24γkBT∆t
m

wr(rij)θij

Weighting function
wc(rij) = wd(rij) = ((wr)rij)2 =

(1 − r/rc) = 0 if r > rc

θ uniform random noise, γ friction term,

Conservative Force

F c = −∇rH[ρ] = −∂r
R

d3r
“ v2

2 ρ2 +
v3
3 ρ3

”
Density function
ρ2 :=

P
ij δ(ri − r)w(|r − rj |)

ρ3 :=
P
ijk δ(ri − r)w(|r − rj |)w(|r − rk|)

Force acting on a particle
F cij = ∂ri

P
jk

“ v2
2 w(rjk) +

v3
3 w(rjk)

P
h w(rjh)

”
F ci =

P
j
`“ v2

2 + 2
3 v3

P
k w(rij)

”
w′(rij)r̂ij

´
=
P
j F cij

1kBT = rc = m = 1

G. Marelli Nano-particle



Motivations
Setting

Stability
Appendix

DPD

Dissipative Particle Dynamics1

The forces are pair-wise interactions
and conserve momentum

The forces are soft

Brownian thermostat

F ij

F ij = f ijw(r), w(0) := 1 w(rc) := 0

F ij = F c
ij + F d

ij + F r
ij

Brownian thermostat

Dissipative Force
Fdij := −γwd(rij)(vijrij)r̂

Random Force

Frij := −
r

24γkBT∆t
m

wr(rij)θij

Weighting function
wc(rij) = wd(rij) = ((wr)rij)2 =

(1 − r/rc) = 0 if r > rc

θ uniform random noise, γ friction term,

Conservative Force

F c = −∇rH[ρ] = −∂r
R

d3r
“ v2

2 ρ2 +
v3
3 ρ3

”
Density function
ρ2 :=

P
ij δ(ri − r)w(|r − rj |)

ρ3 :=
P
ijk δ(ri − r)w(|r − rj |)w(|r − rk|)

Force acting on a particle
F cij = ∂ri

P
jk

“ v2
2 w(rjk) +

v3
3 w(rjk)

P
h w(rjh)

”
F ci =

P
j
`“ v2

2 + 2
3 v3

P
k w(rij)

”
w′(rij)r̂ij

´
=
P
j F cij

1kBT = rc = m = 1

G. Marelli Nano-particle



Motivations
Setting

Stability
Appendix

DPD

Dissipative Particle Dynamics1

The forces are pair-wise interactions
and conserve momentum

The forces are soft

Brownian thermostat

F ij

F ij = f ijw(r), w(0) := 1 w(rc) := 0

F ij = F c
ij + F d

ij + F r
ij

Brownian thermostat

Dissipative Force
Fdij := −γwd(rij)(vijrij)r̂

Random Force

Frij := −
r

24γkBT∆t
m

wr(rij)θij

Weighting function
wc(rij) = wd(rij) = ((wr)rij)2 =

(1 − r/rc) = 0 if r > rc

θ uniform random noise, γ friction term,

Conservative Force

F c = −∇rH[ρ] = −∂r
R

d3r
“ v2

2 ρ2 +
v3
3 ρ3

”
Density function
ρ2 :=

P
ij δ(ri − r)w(|r − rj |)

ρ3 :=
P
ijk δ(ri − r)w(|r − rj |)w(|r − rk|)

Force acting on a particle
F cij = ∂ri

P
jk

“ v2
2 w(rjk) +

v3
3 w(rjk)

P
h w(rjh)

”
F ci =

P
j
`“ v2

2 + 2
3 v3

P
k w(rij)

”
w′(rij)r̂ij

´
=
P
j F cij

1kBT = rc = m = 1

G. Marelli Nano-particle



Motivations
Setting

Stability
Appendix

DPD

Dissipative Particle Dynamics1

The forces are pair-wise interactions
and conserve momentum

The forces are soft

Brownian thermostat

F ij

F ij = f ijw(r), w(0) := 1 w(rc) := 0

F ij = F c
ij + F d

ij + F r
ij

Brownian thermostat

Dissipative Force
Fdij := −γwd(rij)(vijrij)r̂

Random Force

Frij := −
r

24γkBT∆t
m

wr(rij)θij

Weighting function
wc(rij) = wd(rij) = ((wr)rij)2 =

(1 − r/rc) = 0 if r > rc

θ uniform random noise, γ friction term,

Conservative Force

F c = −∇rH[ρ] = −∂r
R

d3r
“ v2

2 ρ2 +
v3
3 ρ3

”
Density function
ρ2 :=

P
ij δ(ri − r)w(|r − rj |)

ρ3 :=
P
ijk δ(ri − r)w(|r − rj |)w(|r − rk|)

Force acting on a particle
F cij = ∂ri

P
jk

“ v2
2 w(rjk) +

v3
3 w(rjk)

P
h w(rjh)

”
F ci =

P
j
`“ v2

2 + 2
3 v3

P
k w(rij)

”
w′(rij)r̂ij

´
=
P
j F cij

1kBT = rc = m = 1

G. Marelli Nano-particle



Motivations
Setting

Stability
Appendix

DPD

Dissipative Particle Dynamics1

The forces are pair-wise interactions
and conserve momentum

The forces are soft

Brownian thermostat

F ij

F ij = f ijw(r), w(0) := 1 w(rc) := 0

F ij = F c
ij + F d

ij + F r
ij

Brownian thermostat

Dissipative Force
Fdij := −γwd(rij)(vijrij)r̂

Random Force

Frij := −
r

24γkBT∆t
m

wr(rij)θij

Weighting function
wc(rij) = wd(rij) = ((wr)rij)2 =

(1 − r/rc) = 0 if r > rc

θ uniform random noise, γ friction term,

Conservative Force

F c = −∇rH[ρ] = −∂r
R

d3r
“ v2

2 ρ2 +
v3
3 ρ3

”
Density function
ρ2 :=

P
ij δ(ri − r)w(|r − rj |)

ρ3 :=
P
ijk δ(ri − r)w(|r − rj |)w(|r − rk|)

Force acting on a particle
F cij = ∂ri

P
jk

“ v2
2 w(rjk) +

v3
3 w(rjk)

P
h w(rjh)

”
F ci =

P
j
`“ v2

2 + 2
3 v3

P
k w(rij)

”
w′(rij)r̂ij

´
=
P
j F cij

1kBT = rc = m = 1

G. Marelli Nano-particle



Motivations
Setting

Stability
Appendix

DPD

Dissipative Particle Dynamics1

The forces are pair-wise interactions
and conserve momentum

The forces are soft

Brownian thermostat

F ij

F ij = f ijw(r), w(0) := 1 w(rc) := 0

F ij = F c
ij + F d

ij + F r
ij

Brownian thermostat

Dissipative Force
Fdij := −γwd(rij)(vijrij)r̂

Random Force

Frij := −
r

24γkBT∆t
m

wr(rij)θij

Weighting function
wc(rij) = wd(rij) = ((wr)rij)2 =

(1 − r/rc) = 0 if r > rc

θ uniform random noise, γ friction term,

Conservative Force
F c = −∇rH[ρ] = −∂r

R
d3r

“ v2
2 ρ2 +

v3
3 ρ3

”
Density function
ρ2 :=

P
ij δ(ri − r)w(|r − rj |)

ρ3 :=
P
ijk δ(ri − r)w(|r − rj |)w(|r − rk|)

Force acting on a particle
F cij = ∂ri

P
jk

“ v2
2 w(rjk) +

v3
3 w(rjk)

P
h w(rjh)

”
F ci =

P
j
`“ v2

2 + 2
3 v3

P
k w(rij)

”
w′(rij)r̂ij

´
=
P
j F cij

1kBT = rc = m = 1

G. Marelli Nano-particle



Motivations
Setting

Stability
Appendix

Model

The membrane behaves like a

incompressible fluid.

From the Gibbs’s phase rule we can

see how many degrees of freedom are

required to describe the system

The most convenient way will be to

define our model removing the solvent

(c = 1) and working in the

coexistance line between the liquid

and vapour interface (φ = 1)

f = c− φ+ 2

φ number of phases

c number of components

f degrees of freedom

P = c1ρ+ c2ρ
2 + c3ρ

3

ρ density

ci virial coefficient

α, β, γ = {A,B}

A hydrophobic, B hydrophilic

Removing the solvent we obtain a
zero pressure sytem. The equation of
state should therefore have a non zero
density for vanishing pressure

A virial expantion of the equation of

state can be approximate up to the

third order
We define the following Hamiltonian

H

kBT
=

Z
vαβρ

2
(r) + vαβγρ

3
(r)d

3
r

that conduce to the wanted equation

of state

ρc + vaa
2 ρ2c + vaaa

3 ρ3c
!= 0 ⇒ vaa

k
−1
t = −V (∂V P )T = vaaρ + 2vaaaρ2 + 1 ⇒ vaaa

χ ' ρ
“
vab −

1
2 (vaa + vbb)

”
⇒ vab

empirically: vbb = 0.1 vbbb = 0 vaaa = vaab = vabb = 0.95

Coarse-graining: ρ 7→ ρR3
e

Nmpc
vαβ 7→

vαβN
2

R3
e

vαβγ 7→
vαβγN

3
mpc

R6
e

mpc monomers per chain, Re end-to-end distance
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