Natural Images

Giovanni Marelli

Infomation in Natural Images

Infomation in Natural Images

- How much information do they carry?

Infomation in Natural Images

- How much information do they carry?
- Are they organized in some specific structures?

Infomation in Natural Images

- How much information do they carry?
- Are they organized in some specific structures?
- Do they belong to a specific class of universality?

A picture is composed by $n \times m$ matrix of pixels

Every pixel contains an array of R, G, B, (eventually α as transparency) which have values within 0,255 which define the intensity I of the picture.

The hystogram shows the distribution of the intensities in the picture

We turn the image into a gray scale image

We turn the image into a gray scale image for different coarse grained pixel: 1:4

We turn the image into a gray scale image for different coarse grained pixel: 1:16

三ㅡㄹ

We turn the image into a gray scale image for different coarse grained pixel: 1:32

We define the contrast as $\phi():=\log \left(I(\boldsymbol{x}) / I_{0}\right)$ where $I_{0}: N(\phi<0)=N(\phi>0)$

If we calculate the probability distribution
we see that for different coarse grained pixel the plot shows long tails

If we calculate ist gradient $|\nabla \phi|$

If we calculate ist gradient $|\nabla \phi|$
The distribution is quite precisely exponential

We calculate the median of the distribution and assign 0 (black) for every intensity below the median and 1 (white) for every intesities above. The pixel are equally populated

We calculate the median of the distribution and assign 0 (black) for every intensity below the median and 1 (white) for every intesities above. The pixel are equally populated Coarse grained: 1:4

We calculate the median of the distribution and assign 0 (black) for every intensity below the median and 1 (white) for every intesities above. The pixel are equally populated Coarse grained: 1:16

The power spectrum in the loglog plot shows a clear power law

The full distribution is invariant to block scaling if we coarse-grain and quantize (top) or quantize and coarse-grain (bottom)

We consider a receptor cell with a contrast noise of variance σ^{2} and a Nyquist frequency of k_{c}.
The power spectrum is connected with the autocorrelation (Th. Wiener-Khintchin)
$<\phi(\boldsymbol{x}) \phi\left(\boldsymbol{x}^{\prime}\right)>:=\int \frac{\mathrm{d}^{2} k}{(2 \pi)^{2}} S_{\phi}(\boldsymbol{k}) e^{\imath \boldsymbol{k}\left(\boldsymbol{x}-\boldsymbol{x}^{\prime}\right)}$

We consider a receptor cell with a contrast noise of variance σ^{2} and a Nyquist frequency of k_{c}.

The power spectrum is connected with the autocorrelation (Th. Wiener-Khintchin)
$<\phi(\boldsymbol{x}) \phi\left(\boldsymbol{x}^{\prime}\right)>:=\int \frac{\mathrm{d}^{2} k}{(2 \pi)^{2}} S_{\phi}(\boldsymbol{k}) e^{\imath \boldsymbol{k}\left(\boldsymbol{x}-\boldsymbol{x}^{\prime}\right)}$
Among all the distributions, the gaussian has the maximum entropy. In this assumption one can connect the autocorrelation of the picture with the information conveyed
$I \leq \frac{\pi N \pi / 2}{k_{c}^{2}} \int \frac{\mathrm{~d}^{2} k}{(2 \pi)^{2}} \log _{2}\left(1+\frac{\left(1-k / k_{c}\right)^{2}}{\pi^{2} \sigma^{2}} k_{c}^{2} S_{\phi}(k)\right)$

A channel that transmit the
information to the brain can h:ve
capacity lower than 1/2 bit/receptor
to convey all the information

We consider a receptor cell with a contrast noise of variance σ^{2} and a Nyquist frequency of k_{c}.

The power spectrum is connected with the autocorrelation (Th. Wiener-Khintchin)
$<\phi(\boldsymbol{x}) \phi\left(\boldsymbol{x}^{\prime}\right)>:=\int \frac{\mathrm{d}^{2} k}{(2 \pi)^{2}} S_{\phi}(\boldsymbol{k}) e^{\imath \boldsymbol{k}\left(\boldsymbol{x}-\boldsymbol{x}^{\prime}\right)}$
Among all the distributions, the gaussian has the maximum entropy. In this assumption one can connect the autocorrelation of the picture with the information conveyed
$I \leq \frac{\pi N \pi / 2}{k_{c}^{2}} \int \frac{\mathrm{~d}^{2} k}{(2 \pi)^{2}} \log _{2}\left(1+\frac{\left(1-k / k_{c}\right)^{2}}{\pi^{2} \sigma^{2}} k_{c}^{2} S_{\phi}(k)\right)$
The signal to noise ration of a single cell is
$R_{S N R}=\frac{1}{\sigma^{2}} \int \frac{\mathrm{~d}^{2} k}{(2 \pi)^{2}}\left(1-k / k_{c}\right)^{1} S_{\phi}(k)$
$I \leq \frac{1}{2} N \frac{\pi}{2} \int_{0}^{1} \mathrm{~d} x x \log _{2}\left(1+\frac{\eta(\eta+1)(\eta+2)}{\pi} R_{S N R} \frac{(10 x)^{2}}{x^{2-\eta}}\right)$
A channel that transmit the
information to the brain can heve
capacity lower than 1/2 bit/receptor
to convey all the information

We consider a receptor cell with a contrast noise of variance σ^{2} and a Nyquist frequency of k_{c}.

The power spectrum is connected with the autocorrelation (Th. Wiener-Khintchin)
$<\phi(\boldsymbol{x}) \phi\left(\boldsymbol{x}^{\prime}\right)>:=\int \frac{\mathrm{d}^{2} k}{(2 \pi)^{2}} S_{\phi}(\boldsymbol{k}) e^{\imath \boldsymbol{k}\left(\boldsymbol{x}-\boldsymbol{x}^{\prime}\right)}$
Among all the distributions, the gaussian has the maximum entropy. In this assumption one can connect the autocorrelation of the picture with the information conveyed
$I \leq \frac{\pi N \pi / 2}{k_{c}^{2}} \int \frac{\mathrm{~d}^{2} k}{(2 \pi)^{2}} \log _{2}\left(1+\frac{\left(1-k / k_{c}\right)^{2}}{\pi^{2} \sigma^{2}} k_{c}^{2} S_{\phi}(k)\right)$
The signal to noise ration of a single cell is
$R_{S N R}=\frac{1}{\sigma^{2}} \int \frac{\mathrm{~d}^{2} k}{(2 \pi)^{2}}\left(1-k / k_{c}\right)^{1} S_{\phi}(k)$
$I \leq \frac{1}{2} N \frac{\pi}{2} \int_{0}^{1} \mathrm{~d} x x \log _{2}\left(1+\frac{\eta(\eta+1)(\eta+2)}{\pi} R_{S N R} \frac{(10 x)^{2}}{x^{2-\eta}}\right)$

A single receptor can produce a spike when the signal overcome a certain threshold
The upper bound we have shown tells that the information contained in a natural image is less than a bit per receptor.

We consider a receptor cell with a contrast noise of variance σ^{2} and a Nyquist frequency of k_{c}.

The power spectrum is connected with the autocorrelation (Th. Wiener-Khintchin)
$<\phi(x) \phi\left(x^{\prime}\right)>:=\int \frac{\mathrm{d}^{2} k}{(2 \pi)^{2}} S_{\phi}(\boldsymbol{k}) e^{\imath k\left(x-x^{\prime}\right)}$
Among all the distributions, the gaussian has the maximum entropy. In this assumption one can connect the autocorrelation of the picture with the information conveyed
$I \leq \frac{\pi N \pi / 2}{k_{c}^{2}} \int \frac{\mathrm{~d}^{2} k}{(2 \pi)^{2}} \log _{2}\left(1+\frac{\left(1-k / k_{c}\right)^{2}}{\pi^{2} \sigma^{2}} k_{c}^{2} S_{\phi}(k)\right)$
The signal to noise ration of a single cell is
$R_{S N R}=\frac{1}{\sigma^{2}} \int \frac{\mathrm{~d}^{2} k}{(2 \pi)^{2}}\left(1-k / k_{c}\right)^{1} S_{\phi}(k)$
$I \leq \frac{1}{2} N \frac{\pi}{2} \int_{0}^{1} \mathrm{~d} x x \log _{2}\left(1+\frac{\eta(\eta+1)(\eta+2)}{\pi} R_{S N R} \frac{(10 x)^{2}}{x^{2-\eta}}\right)$

A single receptor can produce a spike when the signal overcome a certain threshold
The upper bound we have shown tells that the information contained in a natural image is less than a bit per receptor.

A channel that transmit the information to the brain can have capacity lower than $1 / 2$ bit/receptor to convey all the information

Do the black/white pixels remember to the (\uparrow, \downarrow) of the Ising model?

A region of L square pixel has $2^{L \times L}$ states, considering the entropy: $S(3 \times 3)=6.580 \pm 0.003<9$ bit, $S(4 \times 4)=11.154 \pm 0.002 \mathrm{bit}$

Do the black/white pixels remember to the (\uparrow, \downarrow) of the Ising model?

A region of L square pixel has $2^{L \times L}$ states, considering the entropy:
$S(3 \times 3)=6.580 \pm 0.003<9$ bit ,

$$
Z(T)=\frac{1}{\Delta} \int \mathrm{~d} E e^{S(E)-E / T}
$$

$S(4 \times 4)=11.154 \pm 0.002$ bit

To the sample s of $L \times L$ we associate an energy. The Boltzmann probability distribution for a given
"Temperature" is

$$
\begin{gathered}
P(s)=\frac{1}{Z(T)} e^{-E(s) / T} \\
S(T)=-\sum_{s} P(s) \log P(s)
\end{gathered}
$$

Do the black/white pixels remember to the (\uparrow, \downarrow) of the Ising model?
A region of L square pixel has $2^{L \times L}$
states, considering the entropy:
$S(3 \times 3)=6.580 \pm 0.003<9$ bit,
$S(4 \times 4)=11.154 \pm 0.002$ bit
To the sample s of $L \times L$ we associate an energy. The Boltzmann probability distribution for a given
"Temperature" is
One can define new different quantities, the heat capacity

$$
Z(T)=\frac{1}{\Delta} \int \mathrm{~d} E e^{S(E)-E / T}
$$

$$
\begin{gathered}
P(s)=\frac{1}{Z(T)} e^{-E(s) / T} \\
S(T)=-\sum_{s} P(s) \log P(s)
\end{gathered}
$$

$$
C(T)=T \partial_{T} S(T)=\frac{<(\delta E(s))^{2}>_{T}}{T^{2}}
$$

Do the black/white pixels remember to the (\uparrow, \downarrow) of the Ising model?
A region of L square pixel has $2^{L \times L}$ states, considering the entropy: $S(3 \times 3)=6.580 \pm 0.003<9$ bit, $S(4 \times 4)=11.154 \pm 0.002$ bit

To the sample s of $L \times L$ we associate an energy. The Boltzmann probability distribution for a given "Temperature" is

One can define new different quantities, the heat capacity

$$
Z(T)=\frac{1}{\Delta} \int \mathrm{~d} E e^{S(E)-E / T}
$$

A natural image will be compared to a Monte Carlo simulation of the same
 system size of a Ising system

A patch in a picture is as a word in a book
Zipf's law
$P_{r} \propto 1 / r^{\alpha}$

$$
\begin{aligned}
& \alpha \simeq 1, r \text { rank } \\
& p_{r}=A / r^{\alpha}
\end{aligned}
$$

If we identify the energy for a given rank of a Boltzmann
distribution the energy for the rank r is $E_{r}=\alpha \ln r=\ln A Z$
In the thermodynamic llmit the density of states
$\rho(E) \simeq|\mathrm{d} E / \mathrm{d} r|^{-1}=r / \alpha$ which gives

A patch in a picture is as a word in a book

Zipf's law	$\alpha \simeq 1, r$ rank
$P_{r} \propto 1 / r^{\alpha}$	$p_{r}=A / r^{\alpha}$
If we identify the energy for a given rank of a Boltzmann distribution the energy for the rank r is $E_{r}=\alpha \ln r=\ln A Z$	

A patch in a picture is as a word in a book

Zipf's law	$\alpha \simeq 1, r$ rank
$P_{r} \propto 1 / r^{\alpha}$	$p_{r}=A / r^{\alpha}$
If we identify the energy for a given rank of a Boltzmann	
distribution the energy for the rank r is $E_{r}=\alpha \ln r=\ln A Z$	
In the thermodynamic limit the density of states	
$\rho(E) \simeq\|\mathrm{d} E / \mathrm{d} r\|^{-1}=r / \alpha$ which gives	
$\rho(E)=\frac{1}{\alpha}(A Z)^{1 / \alpha} e^{E / \alpha} e^{E / \alpha} \quad S_{Z i p f}(E)=E / \alpha+$ const	

A patch in a picture is as a word in a book

$$
\begin{aligned}
& \text { Zipf's law } \\
& P_{r} \propto 1 / r^{\alpha}
\end{aligned}
$$

$$
\begin{aligned}
& \alpha \simeq 1, r \text { rank } \\
& p_{r}=A / r^{\alpha}
\end{aligned}
$$

If we identify the energy for a given rank of a Boltzmann distribution the energy for the rank r is $E_{r}=\alpha \ln r=\ln A Z$

In the thermodynamic limit the density of states
$\rho(E) \simeq|\mathrm{d} E / \mathrm{d} r|^{-1}=r / \alpha$ which gives
$\rho(E)=\frac{1}{\alpha}(A Z)^{1 / \alpha} e^{E / \alpha} e^{E / \alpha} \quad S_{Z i p f}(E)=E / \alpha+$ const

Most common patches

The natural images repeat specific patterns and contain more information. Can one increase the resolution? Cheating in physics

The previous analysis shows a long correlation between the structure

The natural images repeat specific patterns and contain more information. Can one increase the resolution? Cheating in physics

The previous analysis shows a long correlation between the structure

Considering many natural images one can, as was done to compress the natual languages, finding the two dimensional correlation between the words.

The natural images repeat specific patterns and contain more information. Can one increase the resolution? Cheating in physics

The natural images repeat specific patterns and contain more information. Can one increase the resolution? Cheating in physics

The natural images repeat specific patterns and contain more information. Can one increase the resolution? Cheating in physics

To test different methods to increase the resolution one could

Proving an increment in resolution

Proving an increment in resolution

To test different methods to increase the resolution one could
Resize the original image to a
coarse-grained one

1:1

4:1

Proving an increment in resolution
To test different methods to increase the resolution one could Resize the orig ina' lmage to a coarse-grained one

Try different methods to create one with more resolution

1:1

To test different methods to increase the resolution one could nosize the original image to a coarse-grained one
Try different methods to create one with more resolution
Compress the original images into its more probable pathces

Proving an increment in resolution

Proving an increment in resolution

To test different methods to increase the resolution one col nesize the oif ina' lmage to à coarse-grained one

Try different methods to create one with more resolution

Compress the original images into its more probable pathces

Compare the created images with the original one

$$
\begin{aligned}
& C_{c}=\frac{1}{N^{4}} \sum_{i j k l}\left(p_{i j}-p_{k l}\right)^{2}, \\
& C_{a}=\frac{1}{N^{2}} \sum_{i j}\left(p_{i j}-p_{i j}\right)^{2}
\end{aligned}
$$

Proving an increment in resolution
To test different methods to increase the resolution one cou nesize the of ighat image to a coarse-grained one

Try different methods to create one with more resolution

Compress the original images into its more probable pathces

Will be the information increased whithin the error?

Thank you for your attention

Aknowledgments
Wolfgang Keil (tutor)

References
Thermodynamics of natural images
Stephens, Greg J; Mora, Thierry; Tkacik, Gasper; Bialek, William
http://arxiv.org/abs/0806.2694 (2008)
Statistic of Natural Images: Scaling in the Woods
D. L. Rudeman, W. Bialek

PRL 73814 (1994)

