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overview of the thesis

planar membranes protein/lipid interactions hydrophobic stability

reference values superposition of effects conditions for stability

stalk morphologies pore/protein interactions

universality of structures in models and
experiments

superposition of thickness profiles
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model

solvent-free, coarse-grained model

bonded (harmonic spring, bending):
Usp

kBT
=
PNb−1

i=1
ksp
2

(ri − ri+1)2

Ub
kBT

=
PNb−1

i=2 kb(1− cos θi±1)

non bonded (density functional):

Hnb [ρ]
kBT

=
R

d3r
R3

e

„
v2
AA
2
ρ2
A +

v3
AAA
3

ρ3
A

«

corresponding eq of state:
PR3

e
kBT

= ρ+ vAA
2
ρ2
A + 2

3
vAAAρ

3
A

(fluid/vapor phase coexistance)

the virial coefficients are set by ρcoex and the kNb :

vAA = −2 kNb+3
ρcoex

vAAA = 3
2

kNb+2
ρ2coex

mixed virial coefficient

χN
MF
= ρcoex

`
vAB − 1

2
(vAA + vBB )

´

M. Hömberg and M. Müller, J. Chem. Phys. 132, 155104 (2010)
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properties of planar membranes

planar lamellar membrane

time scale

length scale

coupling
moduli

fluctuation
spectrum
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time and length scale

diffusivity

D = limt→∞

D`
x(t)−x(0)

´2E
4t

timestep: 1[∆ts ] ' 8[ps]

(martini 0.04[ps], atomistic 4[fs])

K. Weiß and J. Enderlein, ChemPhysChem 13, 990 (2012)

varying kNb

thickness

d̄ = 3.25

1[∆L] ' 1.08[nm]

N. Kučerka et al. Biophysica Acta 1808, 2761 (2011)
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quantities fluctuations

we sample from thermal fluctuations

∆Fs =

Z
dxdy

ks

2

(s(x , y)− s̄)2

s̄2

s fluctuating quantity, ks coupling
constant, L patch area.

harmonic approximation

σ = ρd

thickness
`
d − d̄

´2
kel = 22.7[kBT/∆L2]

lipids/area (σ − σ̄)2 kcom = 38.7[kBT/∆L2]

density (ρ− ρ̄)2 kmelt = 34.6[kBT/∆L2]

〈∆σ2〉
σ̄2 =

〈∆ρ2〉
ρ̄2

+
〈∆d2〉

d̄2

1
kcom

= 1
kmelt

+ 1
kel
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energetic contributions

bending (height), peristaltic (thickness), protrusion (lipid separation)

F = 1
2

R
dxdy

“
kben

“
1

R1
+ 1

R2

”
+ kel

(d−d̄)2

d̄2 + kmelt
(ρ−ρ̄)2
ρ̄2

”
Helfrich model

th
ic

k
n

es
s

h
ei

g
h

t

bending:
kben bending rigidity
peristaltic:
kel elastic coupling
c0 spontaneous curvature
a area/lipids
ζ := c0 − a∂ac0
protrusion:
kλ protrusion rigidity
γλ microscopic surface tension
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energetic contributions

bending (height), peristaltic (thickness), protrusion (lipid separation)

Fben = 1
2

R
dxdy kben (∇2h(x , y))2 Monge representation

th
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n
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s
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ei
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h
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〈h2(q)〉L2 = 1
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p
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energetic contributions

bending (height), peristaltic (thickness), protrusion (lipid separation)

Fben = 1
2

R
dxdy kben (∇2h(x , y))2 Fper = 1

2

R
dxdy kel

d2(x ,y)

d̄2

th
ic

k
n

es
s

h
ei

g
h

t

〈h2(q)〉L2 = 1
kbenq4

〈d2(q)〉L2 = 1
kel/d̄

2

p
ow

er
sp

ec
tr

u
m

bending:
kben bending rigidity 14.3[kBT ]
peristaltic:
kel elastic coupling 1.74/d̄2[kBT/∆L4]
c0 spontaneous curvature
a area/lipids
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energetic contributions

bending (height), peristaltic (thickness), protrusion (lipid separation)

th
ic

k
n

es
s

h
ei

g
h

t

〈h2(q)〉L2 = 1
kbenq4 + 1

2(kλ+γλq2)

〈d2(q)〉L2 = 1
kbenq4−4ζkbenq2+kel/d̄

2 + 1
2(kλ+γλq2)

Branningan and Brown, Biophys. J. 92, 864 (2007)

p
ow

er
sp

ec
tr

u
m

bending:
kben bending rigidity 12.5[kBT ]
peristaltic:
kel elastic coupling 1.96/d̄2[kBT/∆L4]
c0 spontaneous curvature
a area/lipids
ζ := c0 − a∂ac0 = 0.14/d̄[∆L2]
protrusion:
kλ protrusion rigidity
γλ microscopic surface tension

we extract: kben , ζ, kel
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lipid/protein interactions

hydrophobic inclusion

radial thickness profile

weakening of the
membrane

continuum model

superposition of effects

pore stabilisation
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thickness profile
contact angle and thinning

cylindrical transmembrane protein

cluster of connected monomers

radius 1[∆L]
hydrophobic mismatch 1.3
Nb/A = 38[∆L−2]

θc = 31o
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cylindrical transmembrane protein
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lipid frustration

oil partitions close to the peptide

bond length

density of the oil

point to point
hydrophobic density
difference with and
without oil

oil molecule:

dodecane

hydrocarbon tail

the oil loses its
translational entropy

acts as a sensor to
partion where most of the
stress is
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discrete description

mean separation
rescaled to the bulk value
thickness from the polar/apolar density
intersection

bead number normalization

u
p

p
er

a
n

d
lo

w
er

m
o

n
o

la
ye
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Delaunay triangulation

thickness

mean area
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weakening of the membrane

lowering the line tension of the pore

classical nucleation theory

G = G0 + 2πRpλ− πR2
pPl

line tension of the pore in NVT
ensemble

Pl =
λ

Rp

the peptide lowers the line
tension of the pore

“pore’s radius correction”

Pl = λ
Rp

“
1− αpep

Npep
Rp

”
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continuum description

elastic model

F =
R

dxdy kben
2

(∇2ds)2 + 4kbenc0∇2ds + 2 kbenζ
d̄

ds∇2ds + kel
2d̄2 d2

s

ds(x , y) := d(x , y)− d̄ Euler Lagrange equations: δF
δds

= 0

“
kben∇4

c + 4kbenζ
d̄
∇2

c + kel
d̄2

”
ds(x , y) = 0 ∇2

c :=

„
∂2
x 0
0 ∂2

y

«

fitting equation: Ae−r/ξ sin(kr)
r

ξ = 2.2[∆L] k = 0.88[∆L−1]

sk
et

ch

B. West, F. L. H. Brown and F. Schmid, Biophys. J. 96, 101 (2009)
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fine exploration

thickness characteristics

the solution of the continuum model is 10 000 times faster than simulations

maximum thinning dmax minimum distance rmin
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superposition of effects

two inclusions

r II
min : minimum splits in two

dII
max : superposition effect is stronger

clusterisation of gramicidins:
(hydrophobic matching)

T. Harroun et al Biophys. J. 76, 937 (1999)
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many peptides
thickness (simulations) thickness (calculations)
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summary

unperturbed membranes

lipid/peptide

sampling from thermal fluctuations
time and length scale
energetic contributions

power spectrum
material properties
parametrisation of the continuum model

thickness profile
undershoot below the bulk value
good agreement between simulations and
calculations

superposition of effects
the membrane gets thinner
pore stabilisation

oil partition fusion pathways

oil partitions
at the interface with the peptide
(pore’s rim and stalk’s ends)
(relaxes the lipid frustration)

metastable states
identify them
(evolution change by lipid composition)

minimal models

fast and fine exploration of phenomena

tuned by more detailed models

confirm the multiscale approach
(universality of stalk’s morphologies)
(bilayer repulsion)
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future developement

lipid/peptide

stalk/pore/peptides

dynamics
study the peptide diffusion by changing
the peptide description
study the lipid diffusivity depending on
the radial distance from the peptide

competing line tensions
interactions between a boundle of peptide
and a stalk
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Dissipative Particle Dynamics thermostat

simulation technique: MD + MDPD thermostat

characteristic:

the total force is the sum of the conservative,
random and dissipative forces
Ftot = Fc + Fr + Fd

the forces are pairwise
Ftot

i =
P

j Fc
ij + Fr

ij + Fd
ij

the forces are soften via a weighting function
Fij = Fijw(rij )

features of the multibody DPD:

local density dependance

“pragmatic extension of the
classical DPD that allows one to
prescribe the thermodynamic
behavior of a system”

ensembles

NPT

NVT

NPtT tensionless membrane.

P. Español and P. B. Warren Europhys. Lett. 30 191 (1995) S. Y. Trominov et al. J. Chem. Phys. 117 9383 (2002)
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oil relaxation

Pαβ(r , z ) = kBTρ(r , z ) + kBTρ(r , z ) + 1
V

(r,z)P
ij

dUij

dr

xαij x
β
ij

|x |

normal component P l
z (r , z ) = Pzz (r , z )− Pθθ(r,z)+Prr (r,z)

2
no oil with oil

radial component P l
r (r , z ) = Prr (r , z )− Pθθ(r,z)+Pzz (r,z)

2

identification of the
interface

position of the
relaxation by the oil
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oil relaxation

Pαβ(r , z ) = kBTρ(r , z ) + kBTρ(r , z ) + 1
V

(r,z)P
ij

dUij

dr

xαij x
β
ij

|x |

normal component P l
z (r , z ) = Pzz (r , z )− Pθθ(r,z)+Prr (r,z)

2
no oil with oil

radial component P l
r (r , z ) = Prr (r , z )− Pθθ(r,z)+Pzz (r,z)

2

lateral pressure difference

identification of the
interface

position of the
relaxation by the oil
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monolayer spontaneous curvature

calculation of the spontaneous curvature

normal lateral pressure profile

lateral pressure

P l
zz (r , z ) = Pzz (r , z )−

„
Pxx (r , z ) + Pyy (r , z )

2

«
spontaneous curvature

kbenc0 =

Z L

0
dz zP l

zz (z )

c0 = −0.36[∆L−1]
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elastic model

F =

Z
dxdy

“
kben2(∇2h)2 + kλ(z+2

+ z−
2
)

+ γλ
`
(∇z+)2 + (∇z−)2 +∇h∇z+/2 +∇d∇z−)

´
+

kcom

2
d2 + kbenc0∇2d +

kbenζd

d̄
∇2d +

kben

2
(∇2d)2

”

comparison with the solution of the differential equation in 2d

finite elements calculation (surface evolver) finite differences calculation
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slab mean square displacement

mean square displacement in radial slabs
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superposition of effects/two inclusions

density plot around the
inclusions

division in sectors by angles minimum distance and depth

the
membrane is
thinner
between the
two inclusions

the position
of the
minimum
shifts
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stiffness of a circular stalk

we search iteratively a torus surrounding the
stalk with:

the smallest lateral radius

the largest normal radius

the most contact with heads

the less contact with tails

ra
d

ia
l

ev
o

lu
ti

o
n

we count the beads inside the torus

the center of mass of the beads is the
torus position

the radius of the torus is rt =
√

A/2π, A
the area occupied by the beads

d
iff

u
si

vi
ty

Dstalk = Dlipid/3
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stiffness and density profile

radial density profiles - model/scale dependence
exp data
PhD thesis of S.
Aeffner

dft, implicit solvent
Martini force field,
explicit solvent

flexible chains, explicit
solvent

dt/ds = 1.6− 1.8
dt/db = 2
ds/db = 1.13− 1.33

d∗t /d
∗
s = 2

d∗t /db = 2.5
d∗s /db = 1.2

d∗t /d
∗
s = 2.1

d∗t /db = 2.1
d∗s /db = 1.0

d∗t /d
∗
s = 2.9

d∗t /db = 2.2
d∗s /db = 0.77

stiffness

d
ft

M
ar

ti
n

i
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oil contribution

addition of small oil chains in the bilayers
d

ft
1

0
%

oil partitioning density profile tails density difference

M
ar

ti
n

i
1

5
%
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