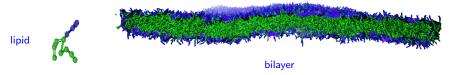
minimal models for lipid membranes: local modifications around fusion objects

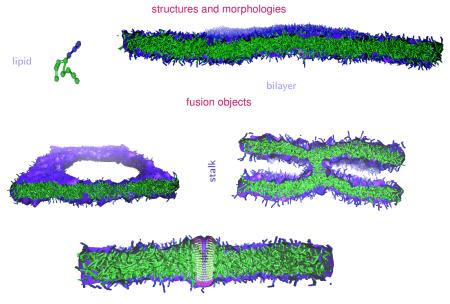
Giovanni Marelli

Georg August Universität, Göttingen

January 21, 2013

PhD defense





transmembrane protein

pore

$membrane\ fusion$

how does membrane fusion work?

viral fusion

K. K. Lee EMBO J. 29, 1299 (2010)

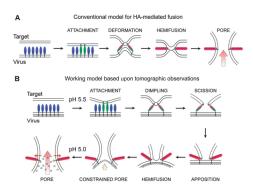
membrane fusion

how does membrane fusion work?

viral fusion

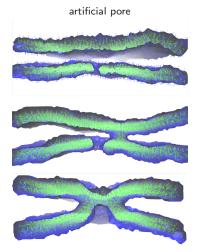
K. K. Lee EMBO J. 29, 1299 (2010)

possible (heuristic) explanations?



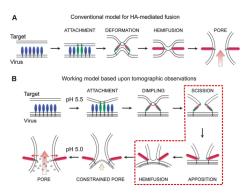
membrane fusion

how does membrane fusion work?



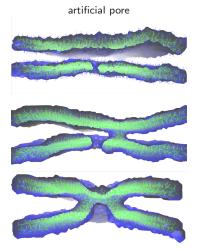
- capture morphology change and dynamics
- isolate metastable states

possible (heuristic) explanations?



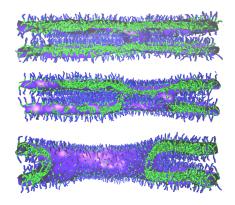
membrane fusion

how does membrane fusion work?



- capture morphology change and dynamics
- isolate metastable states

under lateral tension, low hydration

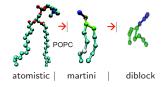


- identify the fusion pathways
- estimate energies and times
- role of the peptides

contents

minimal models for collective phenomena in lipid membranes

lipids as diblocks



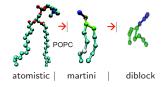
coarse-grained solvent-free soft

- large time scales, many lipids
- computational efficiency
- sampling from thermal fluctuations

contents

minimal models for collective phenomena in lipid membranes

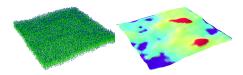
lipids as diblocks



coarse-grained solvent-free soft

- large time scales, many lipids
- computational efficiency
- sampling from thermal fluctuations

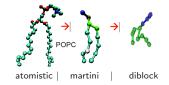
membranes as continuum sheets



contents

minimal models for collective phenomena in lipid membranes

lipids as diblocks



coarse-grained solvent-free soft

- large time scales, many lipids
- computational efficiency
- sampling from thermal fluctuations

membranes as continuum sheets

mechanical properties of unperturbed membranes:

- time and length scales
- energetic contributions

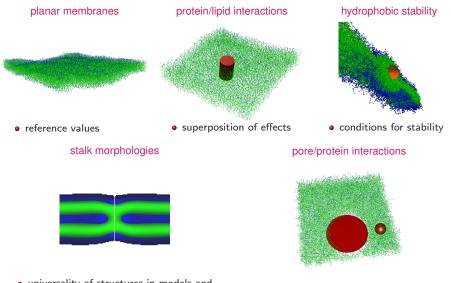
local modifications by fusion objects

- thickness and density profiles in simulations and numerical calculations
- superposition of effects

lipid mediated interactions

- the peptides stabilize the pore
- the peptide lowers the line tension of the pore

overview of the thesis

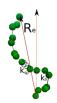


• universality of structures in models and experiments

superposition of thickness profiles

solvent-free, coarse-grained model

bonded (harmonic spring, bending): $\frac{U_{sp}}{k_B T} = \sum_{i=1}^{N_b-1} \frac{k_{sp}}{2} (\mathbf{r}_i - \mathbf{r}_{i+1})^2$ $\frac{U_b}{k_B T} = \sum_{i=2}^{N_b-1} k_b (1 - \cos \theta_{i\pm 1})$

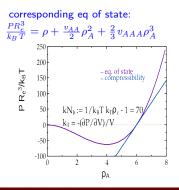


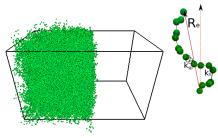
M. Hömberg and M. Müller, J. Chem. Phys. 132, 155104 (2010)

solvent-free, coarse-grained model

bonded (harmonic spring, bending): $\frac{U_{sp}}{k_B T} = \sum_{i=1}^{N_b-1} \frac{k_{sp}}{2} (\mathbf{r}_i - \mathbf{r}_{i+1})^2$ $\frac{U_b}{k_B T} = \sum_{i=2}^{N_b-1} k_b (1 - \cos \theta_{i\pm 1})$

non bonded (density functional): $\frac{H_{nb}[\rho]}{k_B T} = \int \frac{\mathrm{d}^3 r}{R_c^3} \left(\frac{v_{AA}^2}{2} \rho_A^2 + \frac{v_{AAA}^3}{3} \rho_A^3 \right)$





(fluid/vapor phase coexistance)

the virial coefficients are set by ρ_{coex} and the kN_b :

$$v_{AA} = -2\frac{kN_b+3}{\rho_{coex}} \quad v_{AAA} = \frac{3}{2}\frac{kN_b+2}{\rho_{coex}^2}$$

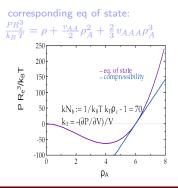
M. Hömberg and M. Müller, J. Chem. Phys. 132, 155104 (2010)

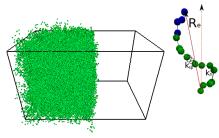
model

solvent-free, coarse-grained model

bonded (harmonic spring, bending): $\frac{U_{sp}}{k_B T} = \sum_{i=1}^{N_b-1} \frac{k_{sp}}{2} (\mathbf{r}_i - \mathbf{r}_{i+1})^2$ $\frac{U_b}{k_B T} = \sum_{i=2}^{N_b-1} k_b (1 - \cos \theta_{i\pm 1})$

non bonded (density functional): $\frac{H_{nb}[\rho]}{k_B T} = \int \frac{\mathrm{d}^3 r}{R_c^3} \left(\frac{v_{AA}^2}{2} \rho_A^2 + \frac{v_{AAA}^3}{3} \rho_A^3 \right)$





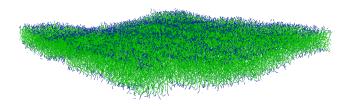
(fluid/vapor phase coexistance)

the virial coefficients are set by ρ_{coex} and the kN_b :

$$v_{AA} = -2\frac{kN_b+3}{\rho_{coex}} \quad v_{AAA} = \frac{3}{2}\frac{kN_b+2}{\rho_{coex}^2}$$

 $\begin{array}{c} \underset{\chi N}{\text{mixed virial coefficient}} \\ \chi N \stackrel{MF}{=} \rho_{coex} \left(v_{AB} - \frac{1}{2} (v_{AA} + v_{BB}) \right) \end{array}$

M. Hömberg and M. Müller, J. Chem. Phys. 132, 155104 (2010)



- time scale
- length scale
- coupling moduli
- fluctuation spectrum

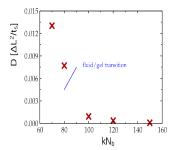
diffusivity

$$D = \lim_{t \to \infty} \frac{\left\langle \left(\mathbf{x}(t) - \mathbf{x}(0) \right)^2 \right\rangle}{4t}$$

timestep: $1[\Delta t_s] \simeq 8[ps]$
(martini 0.04[ps], atomistic 4[fs])

K. Weiß and J. Enderlein, ChemPhysChem 13, 990 (2012)

• varying kN_b



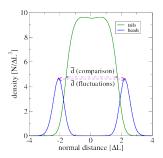
diffusivity

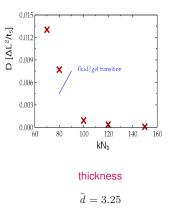
$$D = \lim_{t \to \infty} \frac{\left\langle \left(\mathbf{x}(t) - \mathbf{x}(0) \right)^2 \right\rangle}{4t}$$

timestep: $1[\Delta t_s] \simeq 8[ps]$
(martini 0.04[ps], atomistic 4[fs])

K. Weiß and J. Enderlein, ChemPhysChem 13, 990 (2012)

• varying kN_b





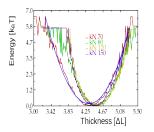
 $1[\Delta L] \simeq 1.08[nm]$

N. Kučerka et al. Biophysica Acta 1808, 2761 (2011)

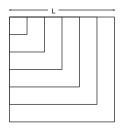
we sample from thermal fluctuations

$$\Delta F_s = \int \mathrm{d}x \mathrm{d}y \, \frac{k_s}{2} \frac{(s(x,y) - \bar{s})^2}{\bar{s}^2}$$

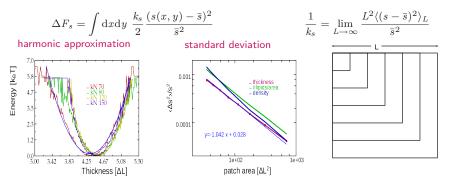
harmonic approximation



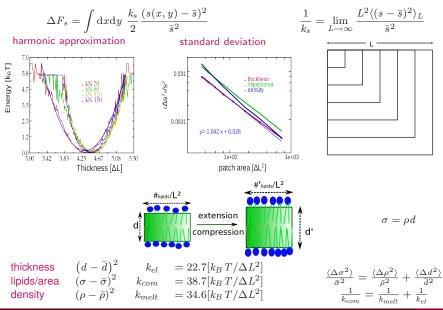
s fluctuating quantity, k_s coupling constant, L patch area.



we sample from thermal fluctuations

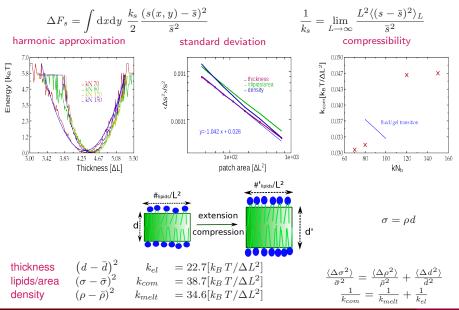


we sample from thermal fluctuations



minimal models for membranes

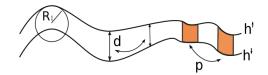
we sample from thermal fluctuations



minimal models for membranes

bending (height), peristaltic (thickness), protrusion (lipid separation)

$$F = \frac{1}{2} \int \mathrm{d}x \mathrm{d}y \, \left(k_{ben} \left(\frac{1}{R_1} + \frac{1}{R_2} \right) + k_{el} \frac{(d-\bar{d})^2}{\bar{d}^2} + k_{melt} \frac{(\rho-\bar{\rho})^2}{\bar{\rho}^2} \right) \, \text{Helfrich model}$$



bending: k_{ben} bending rigidity peristaltic: k_{el} elastic coupling c_0 spontaneous curva a area/lipids

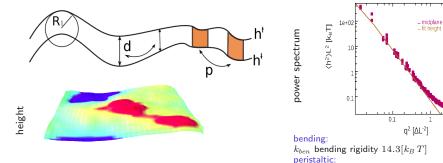
 $\zeta := c_0 - a \partial_a c_0$

protrusion

- k_{λ} protrusion rigidity
- γ_{λ} microscopic surface tension

bending (height), peristaltic (thickness), protrusion (lipid separation)

 $F_{ben} = \frac{1}{2} \int dx dy \ k_{ben} (\nabla^2 h(x, y))^2$ Monge representation



$$k_{el}$$
 elastic coupling

 c_0 spontaneous curvature a area/lipids $\zeta := c_0 - a\partial_a c_0$

protrusion:

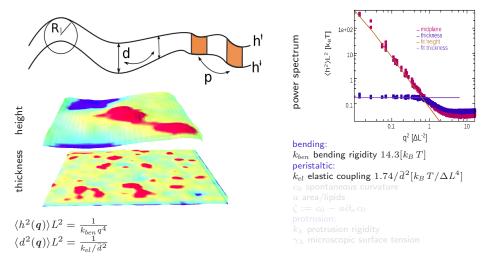
- k_{λ} protrusion rigidity
- γ_{λ} microscopic surface tension

$$\langle h^2({\it q}) \rangle L^2 = rac{1}{k_{ben} q^4}$$

10

bending (height), peristaltic (thickness), protrusion (lipid separation)

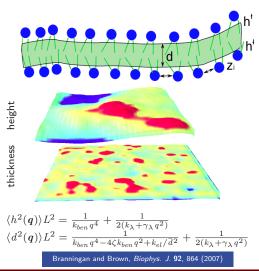
$$F_{ben} = \frac{1}{2} \int \mathrm{d}x \mathrm{d}y \ k_{ben} (\nabla^2 h(x, y))^2 \qquad F_{per} = \frac{1}{2} \int \mathrm{d}x \mathrm{d}y \ k_{el} \frac{d^2(x, y)}{\bar{d}^2}$$

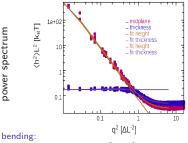


minimal models for membranes

energetic contributions

bending (height), peristaltic (thickness), protrusion (lipid separation)





 k_{ben} bending rigidity $12.5[k_B T]$ peristaltic: k_{el} elastic coupling $1.96/\overline{d}^2 [k_B T/\Delta L^4]$ c_0 spontaneous curvature

 $a \operatorname{area}/\operatorname{lipids}$

$$\zeta := c_0 - a\partial_a c_0 = 0.14/\bar{d}[\Delta L^2]$$

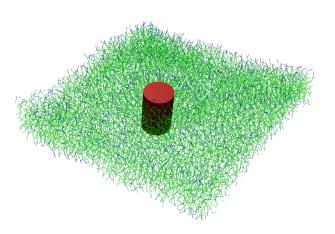
protrusion:

- k_{λ} protrusion rigidity
- γ_{λ} microscopic surface tension

we extract: k_{ben} , ζ , k_{el}

power spectrum

hydrophobic inclusion



- radial thickness profile
- weakening of the membrane
- continuum model
- superposition of effects
- pore stabilisation

thickness profile

contact angle and thinning

cylindrical transmembrane protein

cluster of connected monomers

radius $1[\Delta L]$ hydrophobic mismatch 1.3 $N_b/A = 38[\Delta L^{-2}]$

thickness profile

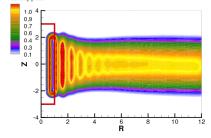
contact angle and thinning

cylindrical transmembrane protein

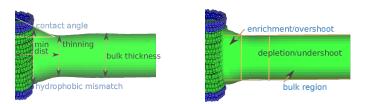
cluster of connected monomers

radius $1[\Delta L]$ hydrophobic mismatch 1.3 $N_b/A = 38[\Delta L^{-2}]$ $\theta_c = 31^o$

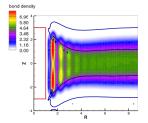
density phob



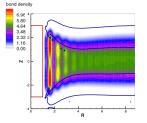
radial thickness profiles



lipid frustration



bond length



oil partitions close to the peptide

oil density

2.17 1.81 1.45

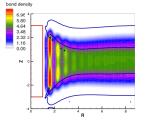
bond length

oil molecule:

- dodecane
- hydrocarbon tail

density of the oil

- the oil loses its translational entropy
- acts as a sensor to partion where most of the stress is

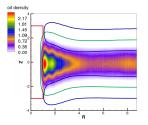


bond length

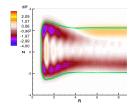
oil molecule:

- dodecane
- hydrocarbon tail

oil partitions close to the peptide



density of the oil

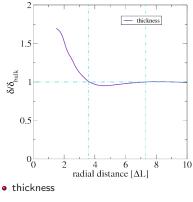


 point to point hydrophobic density difference with and without oil

- the oil loses its translational entropy
- acts as a sensor to partion where most of the stress is

mean separation

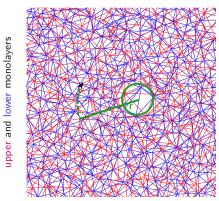
rescaled to the bulk value thickness from the polar/apolar density intersection



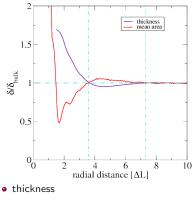
mean area

mean separation

rescaled to the bulk value thickness from the polar/apolar density intersection bead number normalization

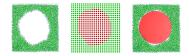


Delaunay triangulation



mean area

lowering the line tension of the pore

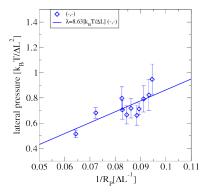


classical nucleation theory

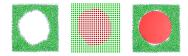
$$G = G_0 + 2\pi R_p \lambda - \pi R_p^2 P_l$$

line tension of the pore in $NVT\$ ensemble

$$P_l = \frac{\lambda}{R_p}$$



lowering the line tension of the pore



classical nucleation theory

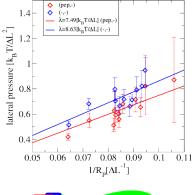
$$G = G_0 + 2\pi R_p \lambda - \pi R_p^2 P_l$$

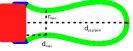
line tension of the pore in $NVT\$ ensemble

$$P_l = \frac{\lambda}{R_p}$$

• the peptide lowers the line tension of the pore

"pore's radius correction" $P_{l} = \frac{\lambda}{R_{p}} \left(1 - \alpha_{pep} \frac{N_{pep}}{R_{p}} \right)$

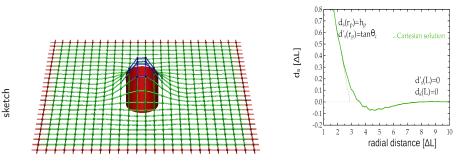




continuum description

elastic model

$$\begin{split} F &= \int \mathrm{d}x \mathrm{d}y \quad \frac{k_{ben}}{2} (\nabla^2 d_s)^2 + 4k_{ben} c_0 \nabla^2 d_s + 2\frac{k_{ben}\zeta}{d} d_s \nabla^2 d_s + \frac{k_{el}}{2d^2} d_s^2 \\ d_s(x,y) &:= d(x,y) - \bar{d} \quad \text{Euler Lagrange equations:} \quad \frac{\delta F}{\delta d_s} = 0 \\ \left(k_{ben} \nabla_c^4 + \frac{4k_{ben}\zeta}{d} \nabla_c^2 + \frac{k_{el}}{d^2}\right) d_s(x,y) = 0 \quad \nabla_c^2 := \begin{pmatrix} \partial_x^2 & 0 \\ 0 & \partial_y^2 \end{pmatrix} \end{split}$$

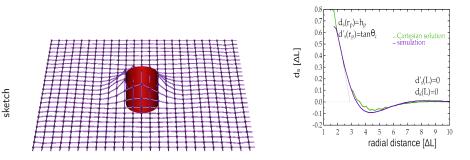


B. West, F. L. H. Brown and F. Schmid, Biophys. J. 96, 101 (2009)

continuum description

elastic model

$$\begin{split} F &= \int \mathrm{d}x \mathrm{d}y \quad \frac{k_{ben}}{2} (\nabla^2 d_s)^2 + 4k_{ben} c_0 \nabla^2 d_s + 2\frac{k_{ben}\zeta}{d} d_s \nabla^2 d_s + \frac{k_{el}}{2d^2} d_s^2 \\ d_s(x,y) &:= d(x,y) - \bar{d} \quad \text{Euler Lagrange equations:} \quad \frac{\delta F}{\delta d_s} = 0 \\ \left(k_{ben} \nabla_c^4 + \frac{4k_{ben}\zeta}{d} \nabla_c^2 + \frac{k_{el}}{d^2}\right) d_s(x,y) = 0 \quad \nabla_c^2 := \begin{pmatrix} \partial_x^2 & 0 \\ 0 & \partial_y^2 \end{pmatrix} \end{split}$$



B. West, F. L. H. Brown and F. Schmid, Biophys. J. 96, 101 (2009)

minimal models for mem

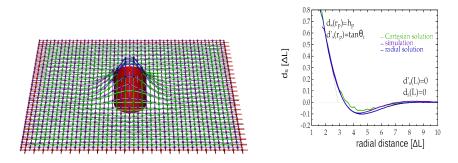
lipids/peptide

continuum description

elastic model

$$\begin{split} F &= \int \mathrm{d}x \mathrm{d}y \quad \frac{k_{ben}}{2} (\nabla^2 d_s)^2 + 4k_{ben} c_0 \nabla^2 d_s + 2\frac{k_{ben} \zeta}{d} d_s \nabla^2 d_s + \frac{k_{el}}{2d^2} d_s^2 \\ d_s(x,y) &:= d(x,y) - \bar{d} \quad \text{Euler Lagrange equations:} \quad \frac{\delta F}{\delta d_s} = 0 \end{split}$$

 $\left(k_{ben}\nabla_r^4 + \frac{4k_{ben}\zeta}{d}\nabla_r^2 + \frac{k_{el}}{d^2}\right)d_s(r) = 0 \qquad \nabla_r^2 := \frac{1}{r}\partial_r(r\partial_r)$

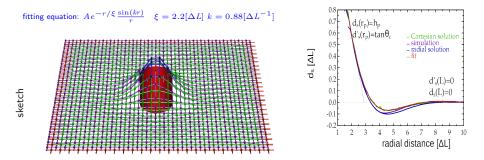


B. West, F. L. H. Brown and F. Schmid, Biophys. J. 96, 101 (2009)

elastic model

$$F = \int dx dy \quad \frac{k_{ben}}{2} (\nabla^2 d_s)^2 + 4k_{ben} c_0 \nabla^2 d_s + 2\frac{k_{ben}}{d} d_s \nabla^2 d_s + \frac{k_{el}}{2d^2} d_s^2$$
$$d_s(x, y) := d(x, y) - \bar{d} \quad \text{Euler Lagrange equations:} \quad \frac{\delta F}{\delta d_s} = 0$$

 $\left(k_{ben}\nabla_r^4 + \frac{4k_{ben}\zeta}{d}\nabla_r^2 + \frac{k_{el}}{d^2}\right)d_s(r) = 0 \qquad \nabla_r^2 := \frac{1}{r}\partial_r(r\partial_r)$

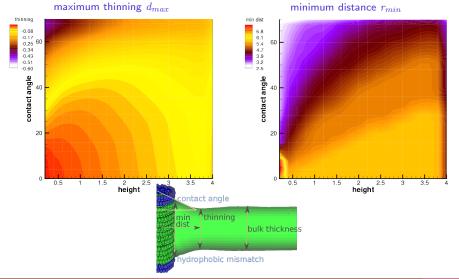


B. West, F. L. H. Brown and F. Schmid, Biophys. J. 96, 101 (2009)

fine exploration

thickness characteristics

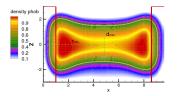
the solution of the continuum model is $10\,000$ times faster than simulations

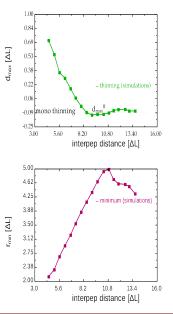


inimal models for membranes

superposition of effects

two inclusions





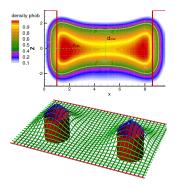
- r_{min}^{II} : minimum splits in two
- d_{max}^{II} : superposition effect is stronger

clusterisation of gramicidins: (hydrophobic matching)

T. Harroun et al Biophys. J. 76, 937 (1999)

superposition of effects

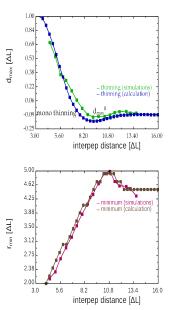
two inclusions



- r_{min}^{II} : minimum splits in two
- d_{max}^{II} : superposition effect is stronger

clusterisation of gramicidins: (hydrophobic matching)

T. Harroun et al Biophys. J. 76, 937 (1999)

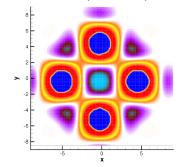


many peptides

8 peptides 6 thinning thickness 0.37 > 0 0.22 -2 0.08 -0.07 -0.21 -0.36 -0.50 0 X 5 -5

thickness (simulations)

thickness (calculations)



many peptides

thickness 0.37

0.22

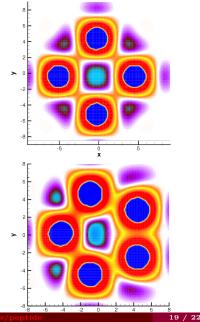
0.08

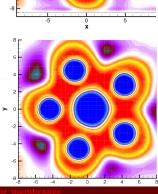
-0.07 -0.21 -0.36 -0.50

8 peptides 6 thinning > (-2 -5 0 x

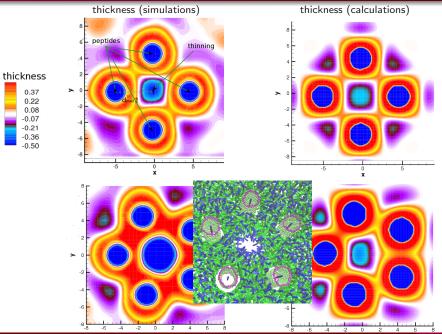
thickness (simulations)

thickness (calculations)





many peptides



summary

unperturbed membranes

• sampling from thermal fluctuations

- time and length scale
- energetic contributions

opwer spectrum

- material properties
- parametrisation of the continuum model

- sampling from thermal fluctuations
 - time and length scale
 - energetic contributions
- opwer spectrum
 - material properties
 - parametrisation of the continuum model

lipid/peptide

- thickness profile
 - undershoot below the bulk value
 - good agreement between simulations and calculations

superposition of effects

- the membrane gets thinner
- pore stabilisation

- sampling from thermal fluctuations
 - time and length scale
 - energetic contributions
- opwer spectrum
 - material properties
 - parametrisation of the continuum model

oil partition

oil partitions

- at the interface with the peptide (pore's rim and stalk's ends)
- (relaxes the lipid frustration)

lipid/peptide

- thickness profile
 - undershoot below the bulk value
 - good agreement between simulations and calculations

superposition of effects

- the membrane gets thinner
- pore stabilisation

- sampling from thermal fluctuations
 - time and length scale
 - energetic contributions
- opwer spectrum
 - material properties
 - parametrisation of the continuum model

oil partition

oil partitions

- at the interface with the peptide (pore's rim and stalk's ends)
- (relaxes the lipid frustration)

lipid/peptide

- thickness profile
 - undershoot below the bulk value
 - good agreement between simulations and calculations

superposition of effects

- the membrane gets thinner
- pore stabilisation

fusion pathways

metastable states

- identify them
- (evolution change by lipid composition)

- sampling from thermal fluctuations
 - time and length scale
 - energetic contributions
- opwer spectrum
 - material properties
 - parametrisation of the continuum model

oil partition

- oil partitions
 - at the interface with the peptide (pore's rim and stalk's ends)
 - (relaxes the lipid frustration)

lipid/peptide

- thickness profile
 - undershoot below the bulk value
 - good agreement between simulations and calculations

superposition of effects

- the membrane gets thinner
- pore stabilisation

fusion pathways

metastable states

- identify them
- (evolution change by lipid composition)

minimal models

- fast and fine exploration of phenomena
- tuned by more detailed models
- confirm the multiscale approach (universality of stalk's morphologies) (bilayer repulsion)

lipid/peptide

- dynamics
 - study the peptide diffusion by changing the peptide description
 - study the lipid diffusivity depending on the radial distance from the peptide

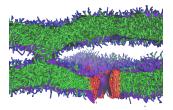
lipid/peptide

dynamics

- study the peptide diffusion by changing the peptide description
- study the lipid diffusivity depending on the radial distance from the peptide

stalk/pore/peptides

- competing line tensions
 - interactions between a boundle of peptide and a stalk



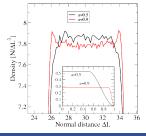
thank you for your attention

acknowledgments Marcus Müller Yuliya Smirnova Jelger Risselada Martin Hömberg Kostas Daoulas Ulrich Welling

simulation technique: MD + MDPD thermostat

characteristic:

- the total force is the sum of the conservative, random and dissipative forces $\mathbf{F}^{tot} = \mathbf{F}^c + \mathbf{F}^r + \mathbf{F}^d$
- the forces are pairwise $\mathbf{F}_{i}^{tot} = \sum_{j} \mathbf{F}_{ij}^{c} + \mathbf{F}_{ij}^{r} + \mathbf{F}_{ij}^{d}$
- the forces are soften via a weighting function $\mathbf{F}_{ij} = \mathbf{F}_{ij} \, w(r_{ij})$



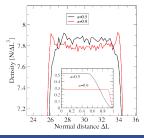
P. Español and P. B. Warren Europhys. Lett. 30 191 (1995)

- local density dependance
- "pragmatic extension of the classical DPD that allows one to prescribe the thermodynamic behavior of a system"
- NPT
- *NVT*
- $NP_t T$ tensionless membrane.

simulation technique: MD + MDPD thermostat

characteristic:

- the total force is the sum of the conservative, random and dissipative forces $\mathbf{F}^{tot} = \mathbf{F}^c + \mathbf{F}^r + \mathbf{F}^d$
- the forces are pairwise $\mathbf{F}_{i}^{tot} = \sum_{j} \mathbf{F}_{ij}^{c} + \mathbf{F}_{ij}^{r} + \mathbf{F}_{ij}^{d}$
- the forces are soften via a weighting function $\mathbf{F}_{ij} = \mathbf{F}_{ij} \, w(r_{ij})$



P. Español and P. B. Warren Europhys. Lett. 30 191 (1995)

features of the multibody DPD:

- local density dependance
- "pragmatic extension of the classical DPD that allows one to prescribe the thermodynamic behavior of a system"

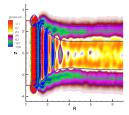
ensembles

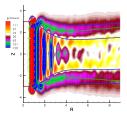
- *NPT*
- *NVT*
- $NP_t T$ tensionless membrane.

oil relaxation

$$P_{\alpha\beta}(r,z) = k_B T \rho(r,z) + k_B T \rho(r,z) + \frac{1}{V} \sum_{ij}^{(r,z)} \frac{\mathrm{d} U_{ij}}{\mathrm{d}r} \frac{x_{ij}^{\alpha} x_{ij}^{\beta}}{|x|}$$

normal component $P_z^l(r,z) = P_{zz}(r,z) - \frac{P_{\theta\theta}(r,z) + P_{rr}(r,z)}{2}$ no oil with oil



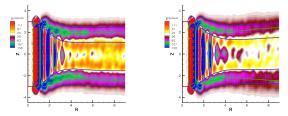


- identification of the interface
- position of the relaxation by the oil

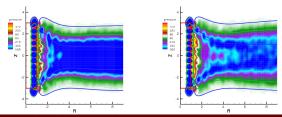
minimal models for membranes

$$P_{\alpha\beta}(r,z) = k_B T \rho(r,z) + k_B T \rho(r,z) + \frac{1}{V} \sum_{ij}^{(r,z)} \frac{\mathrm{d}U_{ij}}{\mathrm{d}r} \frac{x_{ij}^{\alpha} x_{ij}^{\beta}}{|x|}$$

normal component $P_z^l(r,z) = P_{zz}(r,z) - \frac{P_{\theta\theta}(r,z) + P_{trr}(r,z)}{2}$ no oil with oil



radial component $P_r^l(r,z) = P_{rr}(r,z) - \frac{P_{\theta\theta}(r,z) + P_{zz}(r,z)}{2}$



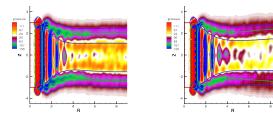
- identification of the interface
- position of the relaxation by the oil

minimal models for membranes

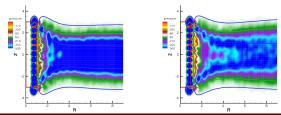
oil relaxation

$$P_{\alpha\beta}(r,z) = k_B T \rho(r,z) + k_B T \rho(r,z) + \frac{1}{V} \sum_{ij}^{(r,z)} \frac{\mathrm{d} U_{ij}}{\mathrm{d}r} \frac{x_{ij}^{\alpha} x_{ij}^{\beta}}{|x|}$$

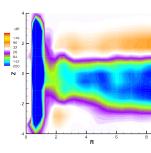
normal component $P_z^l(r,z) = P_{zz}(r,z) - \frac{P_{\theta\theta}(r,z) + P_{rr}(r,z)}{2}$ no oil with oil



radial component $P_r^l(r,z) = P_{rr}(r,z) - \frac{P_{\theta\theta}(r,z) + P_{zz}(r,z)}{2}$



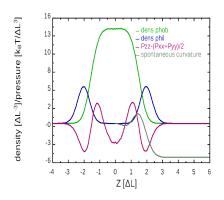
lateral pressure difference



- identification of the interface
- position of the relaxation by the oil

minimal models for membranes

calculation of the spontaneous curvature



lateral pressure

$$P_{zz}^{l}(r,z) = P_{zz}(r,z) - \left(\frac{P_{xx}(r,z) + P_{yy}(r,z)}{2}\right)$$

spontaneous curvature

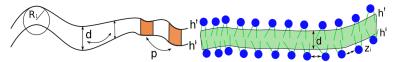
$$k_{ben} c_0 = \int_0^L \mathrm{d}z \, z P_{zz}^l(z)$$

 $c_0 = -0.36[\Delta L^{-1}]$

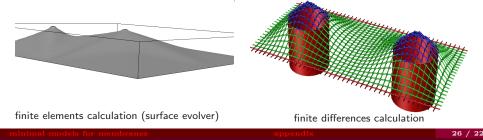
normal lateral pressure profile

elastic model

$$F = \int dx dy \left(k_{ben} 2(\nabla^2 h)^2 + k_{\lambda} (z^{+2} + z^{-2}) \right) + \gamma_{\lambda} \left((\nabla z^+)^2 + (\nabla z^-)^2 + \nabla h \nabla z^+ / 2 + \nabla d \nabla z^-) \right) + \frac{k_{com}}{2} d^2 + k_{ben} c_0 \nabla^2 d + \frac{k_{ben} \zeta d}{d} \nabla^2 d + \frac{k_{ben}}{2} (\nabla^2 d)^2 \right)$$

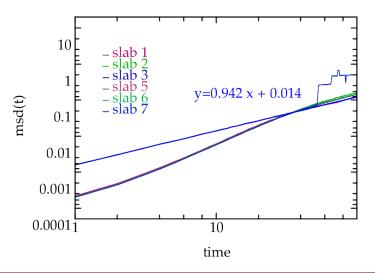


comparison with the solution of the differential equation in 2d

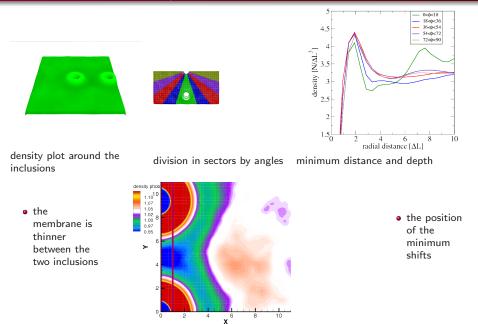


slab mean square displacement

mean square displacement in radial slabs

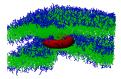


superposition of effects/two inclusions

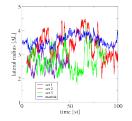


stiffness of a circular stalk

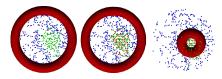
we search iteratively a torus surrounding the stalk with:



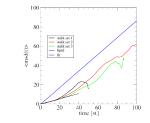
- the smallest lateral radius
- the largest normal radius
- the most contact with heads
- the less contact with tails



we count the beads inside the torus



- the center of mass of the beads is the torus position
- the radius of the torus is $r_t = \sqrt{A}/2\pi$, A the area occupied by the beads



 $D_{stalk} = D_{lipid}/3$

radial evolution

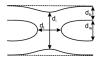
diffusivity

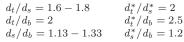
stiffness and density profile

exp data PhD thesis of S. Aeffner

radial density profiles - model/scale dependence Martini force field, dft, implicit solvent explicit solvent

flexible chains, explicit solvent

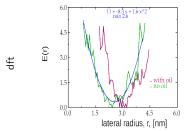




 $d_t^*/d_s^* = 2.1$ $d_t^*/d_b = 2.1$ $d_{e}^{*}/d_{b} = 1.0$

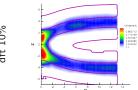
 $d_t^*/d_s^* = 2.9$ $d_t^*/d_b = 2.2$ $d_{e}^{*}/d_{h} = 0.77$

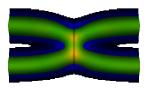
Martini



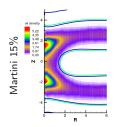
94 + -74 x + 15 x^ min 2.5 3.4 Ē - with oil 1.0 1.9 2.8 3.6 4.5 lateral radius, rtor [nm]

addition of small oil chains in the bilayers

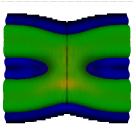


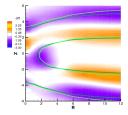


oil partitioning



density profile





tails density difference

